

Operational Analysis Technical Memorandum

PID 77333

Opportunity Corridor Cuyahoga County, OH

Submitted to:

Ohio Department of Transportation 5500 Transportation Blvd Garfield Heights, Ohio 44125

Submitted by:

HNTB Ohio, Inc. 1100 Superior Avenue Suite 1330 Cleveland, Ohio 44114

May 2012 Revised June 2012

HNTB

Operational Analysis Technical Memorandum CUY - Opportunity Corridor Project, PID No. 77333 Cuyahoga County, Ohio

Prepared for

The Ohio Department of Transportation, District 12 5500 Transportation Boulevard Garfield Heights, Ohio 44125-5396

Prepared by

HNTB Corporation 1100 Superior Avenue Suite 1330 Cleveland, Ohio 44114-2531

May 2012 Revised June 2012

TABLE OF CONTENTS

1.0	INT	RODUCTION	1
2.0 2.1		FFIC VOLUMES	
2.2	No Bu	ild Condition	2
2.3	Build	Condition	3
3.0	TRA	FFIC ANALYSIS	3
3.1	•	ized Intersections	
		Methodology	
3.2		Highway Capacity Software Analysisvay Segments and Ramps	
J. _		Methodology	
		Highway Capacity Software Analysis	
3.3	Turn L	ane Lengths	6
4.0	CON	ICLUSION	.10
LIST (OF TA	BLES	
Table :	1: Signa	lized Intersection LOS Criteria	3
Table 2	2: Basic	Freeway Segment LOS Criteria	5
Table 3	3: Merg	ge And Diverge LOS Criteria	6
Table 4	4: Turn	Lane Lengths	8
LIST (OF AP	PENDICES	
Appen	dix A	Exhibits	
Appen	dix B	Certified Traffic Volumes	
Appen	dix C	Traffic Analysis Coordination Meeting Minutes and Correspondence	
Appen	dix D:	HCS Analysis Results - Signalized Intersections (2020 AM Peak Hour)	
Appen	dix E:	HCS Analysis Results - Signalized Intersections (2020 PM Peak Hour)	
Appen	dix F:	Synchro Analysis Results - Signalized Intersections (2020 AM Peak Hour)	
Appen	dix G:	Synchro Analysis Results - Signalized Intersections (2020 PM Peak Hour)	
Appen	dix H:	HCS Analysis Results- Freeway Segment and Ramp (2020 AM Peak Hour)	
Appen	dix I:	HCS Analysis Results- Freeway Segment and Ramp (2020 PM Peak Hour)	
Appen	dix J:	Turn Lane Length Calculations	

1.0 INTRODUCTION

The Opportunity Corridor project area is located in the City of Cleveland in Cuyahoga County, Ohio. The western study area limits are the I-490 approach to the I-490/E. 55th Street intersection in the Slavic Village area. The eastern study area limits are the E. 105th Street/Chester Avenue intersection in the University Circle area. The study area boundary is shown in **Appendix A, Exhibit 1**. The purpose of this project is to improve the transportation infrastructure, access, and mobility within a historically underserved, economically depressed area within the City of Cleveland. Throughout the Ohio Department of Transportation (ODOT) Project Development Process (PDP), a No Build and various Build alternatives have been considered. Through coordination with the project's Steering Committee, ODOT, the City of Cleveland and the general public, a Recommended Preferred Alternative has been identified. This alternative involves the construction of a new arterial roadway (urban boulevard). The design speed of the proposed urban boulevard would be 40 mph (35 mph legal speed), and it would consist of a four-to five-lane typical section with turn lanes at intersections. It would extend from the I-490/E. 55th Street intersection in the west to the E. 105th Street/Chester Avenue intersection in the east. **Appendix A, Exhibit 1** shows the proposed alignment of the Opportunity Corridor project.

Between the I-490/E. 55th Street intersection and Quincy Avenue, the proposed boulevard would generally be on new alignment. From Quincy Avenue to Chester Avenue, the roadway would be constructed along the existing E. 105th Street alignment. The boulevard would include a depressed, grassy median between E. 55th Street and Quincy Avenue. In addition, wide outside travel lanes would be provided for shared use with bicycle traffic. The proposed boulevard would also include a multi-use path on the south side of the roadway and a sidewalk on the north side of the roadway.

The Recommended Preferred Alternative consists of the alignment that minimizes impacts and interfaces most effectively with the existing roadway network. Beginning in the west, the boulevard will be depressed and cross under existing E. 55th Street. A quadrant roadway will be built in the southeast quadrant of the grade separation to provide full access to and from E. 55th Street. The 35 mph speed limit for the boulevard begins at the E. 55th Street overpass. The I-490 approach and the ramps from I-77 to EB I-490 will be reconfigured. The existing I-77 NB and SB ramps merge into a two-lane ramp and then join EB I-490 with an inside merge. This type of merge does not meet current design standards and will be reconfigured to first merge into a one lane ramp and then join into I-490 as an add lane. The No Build and Build lane configuration at the I-490/I-77 interchange is illustrated in **Appendix A, Exhibit 2**. East of E. 55th Street, The boulevard will include the following signalized intersections:

- E. 55th Street and the quadrant roadway
- Boulevard and the quadrant roadway
- Boulevard and Kinsman Road
- Boulevard and E. 75th Street
- Boulevard and E. 79th Street
- Boulevard and Buckeye Road
- Boulevard and Woodland Avenue

- Boulevard and E. 93rd Street
- Quincy Avenue and Boulevard/E.105th Street
- Cedar Avenue and E. 105th Street
- Carnegie Avenue and E. 105th Street
- Euclid Avenue and E. 105th Street
- Chester Avenue and E. 105th Street

This document presents the traffic operational analysis methodology, results, and proposed lane use for the Recommended Preferred Alternative.

2.0 TRAFFIC VOLUMES

The first step in developing the certified traffic for this project was to update the regional Travel Demand Model (TDM) to include traffic associated with future development. As a result, HNTB updated the Northeast Ohio Areawide Coordinating Agency's (NOACA's) TDM to incorporate planned development anticipated to occur independent of the proposed boulevard and complementary development anticipated to occur in conjunction with the proposed boulevard. A *Travel Demand Model Enhancements Technical Memorandum (December, 2011)* summarizes the process used to update the TDM.

After the TDM was updated, the resulting traffic assignments were post-processed to develop traffic plates for the design year Build and No Build scenarios. A *Turning Movement Traffic Volume Forecasting Technical Memorandum (December, 2011)* summarizes the methodology used to develop the design year traffic forecasts. The traffic plates were certified by ODOT's Office of Technical Services on April 11, 2012.

Subsequently, it was determined that the eastern leg of Quincy Avenue would be closed due to geometric constraints. The traffic using this leg was distributed to Buckeye Road and E. 93rd Street via Woodland Avenue. These traffic volumes were analyzed to determine the lane use described in this document.

All certified traffic information can be found in **Appendix B**.

2.1 DESIGN YEAR

The anticipated Opening Year of the project is 2020, therefore, traffic assignments were generated for 2020 and 2040. Because anticipated development was estimated for ten year periods, traffic assignments were also generated for 2030. To determine the most appropriate design year, the volumes were analyzed to establish which year will require the largest roadway footprint. To do so, the AM and PM peak traffic volumes at each intersection were compared using the following measures:

- 1. Total volume by approach
- 2. The magnitude of conflicting movements

Although the variation between 2020, 2030 and 2040 was no more than one-percent (1%), each comparison showed 2020 as the year with the highest volumes and most conflicting movements. Therefore, 2020 was designated as both the Opening Year and Design Year for the purposes of the traffic analysis.

2.2 NO BUILD CONDITION

The No Build condition for this project is defined as the existing roadway network contained in and surrounding the study area limits. The No Build condition also assumes that the improvements related to the Cleveland Innerbelt project have been built and are operational by the opening day (2020). It is also assumed that existing and planned development projects, as identified by area Community Development Corporations (CDCs), will be in place. Because the majority of the intersections associated with the proposed project do not currently exist, a separate traffic analysis of the No Build condition was not completed.

2.3 BUILD CONDITION

The Build condition includes the construction of the Recommended Preferred Alternative, as discussed in **Section 1.0**, as well as the Cleveland Innerbelt construction and development assumptions from the No Build scenario. In addition, the Build condition assumes additional complementary development occurs in conjunction with the proposed boulevard.

Information on specific development projects, assumptions and distributions can be found in the *Travel Demand Model Enhancements Technical Memorandum* dated December 22, 2011.

3.0 TRAFFIC ANALYSIS

3.1 SIGNALIZED INTERSECTIONS

3.1.1 Methodology

"Level of Service (LOS) is a quantitative stratification of a performance measure or measures that represent quality of service (*Highway Capacity Manual, 2010*)." Performance measures vary by facility type and generally include density, percent-time spent following, average travel speed, percent free-flow speed, and control delay. Level of service designations range from A to F. Level of service A describes near-ideal traffic operations characterized by excellent progression of the traffic stream. Level of service F, on the other hand, is characterized by heavy congestion and long delays.

For signalized intersections, control delay is used to estimate LOS. Control delay includes the time consumed by initial deceleration, queue move-up, stopped traffic, and final acceleration that would not occur in the absence of traffic control. The level of service criteria for these areas is summarized in **Table 1**. Generally, for urban, built-up areas, an acceptable level of service is LOS D.

In some cases, the average control delay per vehicle for an intersection may result in an acceptable LOS, but certain movements could be nearing their capacity. This is measured by the volume-to-capacity ratio (v/c). A v/c ratio above 1.0 automatically assigns a LOS F to that movement, indicating that the demand exceeds capacity. Generally, a v/c ratio less than 0.90 is preferred.

Signalized Intersection LOS	Control Delay per Vehicle (s/veh)				
А	≤ 10				
В	> 10 and ≤ 20				
С	> 20 and ≤ 35				
D	> 35 and ≤ 55				
E	> 55 and ≤ 80				
F	> 80 orv/c >1.00				

Table 1: Signalized Intersection LOS Criteria

Level of service analyses were conducted for the Design Year of 2020. Analysis was performed for both the AM and PM peak hours. Highway Capacity Software (HCS) and Synchro were used for the analyses.

Signalized intersections along the corridor were analyzed in HCS to determine the lane use for the proposed boulevard and intersecting side streets. The approach delays were balanced by adjusting the

green time for the signalized intersection to make the approach delay for the highest north/south approach equal, or nearly equal, to the highest east/west approach, per ODOT's guidance in Appendix C of its *Location and Design Manual, Volume 1*. Coordination meetings were held with the City of Cleveland and ODOT to gain their concurrence with this approach on January 26 and January 30, 2012, respectively. Both agencies agreed that it was preferred to have acceptable LOS and v/c ratios less than 0.9 but would consider higher v/c ratios depending on the costs and impacts. Copies of the minutes from both meetings are included in **Appendix C**. The lane use presented in this document provides acceptable LOS, minimizes delay, and achieves v/c ratios under 0.90 where possible.

The lane configuration identified using HCS was then modeled using Synchro to determine operations with optimized signal coordination along the corridor for the AM and PM peak hours. Results for the AM and PM peak hour Synchro analysis are included in **Appendix F** and **Appendix G**.

3.1.2 Highway Capacity Software Analysis

HCS 2010 analysis was completed for the 13 signalized intersections along the proposed boulevard. Due to limitations or errors in the 2010 software, HCS+ was used as necessary. As discussed in **Section 3.1.1**, the approach delays were balanced in accordance to Appendix C of ODOT's *Location and Design Manual, Volume 1*.

AM Peak Hour

HCS results indicate intersection levels of service ranging from LOS C to LOS D during the AM peak hour for the 2020 Build condition. All movements operate with a v/c ratio less than 0.90 and LOS D or better.

A figure showing lane use and LOS based on HCS analysis is included as **Appendix A, Exhibits 3a-3c.** The identification number in parenthesis corresponds to the HCS results provided in **Appendix D**.

PM Peak Hour

HCS results indicate intersection levels of service ranging from LOS B to LOS D during the PM peak hour for the 2020 Build condition. However, one movement at the intersection of E. 105th Street/Boulevard and Euclid Avenue operates below acceptable levels.

The northbound left movement at Euclid Avenue operates with a v/c ratio of 0.94 and LOS F with a delay of 115 seconds. Euclid Avenue currently operates as a Bus Rapid Transit (BRT) corridor. It was constructed in 2008 and creates a constraint when designing E. 105th Street to meet the operational requirements of the project. HCS has limitations in modeling this intersection. To accommodate the protected bus movements, a "dummy" phase of 6.5 seconds was added to the eastbound and westbound left turn movements. This may have resulted in a conservative result. The northbound left turn volume is low (90 vehicles). Operational concerns will be mitigated by providing a turn lane that is 400 feet to accommodate storage, deceleration, taper, and through back up (see **Section 3.3**). In addition, there are several east-west roadways that intersect with E. 105th Street and provide alternate routes to Euclid Avenue. Given the limitations in the analysis methodology, the overall operation of the intersection (LOS D), the low northbound turning volume, and the provided storage, further changes to this intersection are not recommended.

A figure showing lane use and LOS based on HCS analysis is included as **Appendix A, Exhibits 3a-3c.** The northbound left turn movement operational results, as described above, are identified on these figures. The identification number in parenthesis corresponds to the HCS results provided in **Appendix E**.

3.2 FREEWAY SEGMENTS AND RAMPS

The only freeway components analyzed as a part of this project is the I-490 approach to the E. 55th Street intersection and the adjacent I-77 ramps. During a coordination meeting with ODOT on January 30, 2012, it was established that an Interchange Modification Study (IMS) was not required for this project. Minutes from this meeting are attached in **Appendix C.**

3.2.1 Methodology

Similar to signalized intersections, LOS represents the performance of freeway segments and ramp operations. The performance measure for level of service on freeway segments is traffic density (passenger cars/mile/lane or pc/mi/ln). Density is a reflection of the freedom to maneuver within the traffic stream and the spacing between vehicles on the freeway segment. The level of service criteria for freeway segments is summarized in **Table 2**.

Basic Freeway Segment LOS	Density (pc/mi/ln)				
A	≤ 11				
В	> 11-18				
С	> 18-26				
D	> 26-35				
E	> 35-45				
F	> 45 or any component v/c >1.00				

Table 2: Basic Freeway Segment LOS Criteria

A ramp is a length of roadway providing an exclusive connection between two highway facilities. The ramp junction is the short segment of highway along which vehicles transfer from an entrance ramp to the main roadway or from the main roadway to an exit ramp. At the typical ramp junction, entering vehicles will have a short distance to accelerate and merge into the main traffic stream and exiting vehicles will have a short distance to diverge and decelerate. The number of highway lanes upstream of ramp junction will equal to the number of highway lanes downstream of the ramp junction. This is the configuration in which the procedures in the Highway Capacity Manual are intended to analyze. A special condition occurs when the entrance ramp forms an additional highway lane (add lane) or when a highway lane forms the exiting ramp (drop lane). In this configuration, the number of mainline lanes upstream of the ramp junction is not equal to the number of lanes downstream of the ramp junction. At these locations, the capacity of the ramp roadway will determine the operation of the ramp. The ramp roadway is treated as a basic freeway segment to determine LOS. Basic freeway segment analysis cannot be made for a one-lane freeway segment. To overcome this limitation, one-lane segment volumes were doubled and entered into HCS as two lanes of traffic.

Like basic freeway segments, the performance measure for level of service in merge and diverge areas is traffic density. The level of service criteria for these areas is summarized in **Table 3**, **page 6**.

Table 3:	Merge	and	Diverge	LOS	Criteria
----------	-------	-----	---------	-----	----------

Merge and Diverge LOS	Density (pc/mi/ln)
А	≤ 10
В	> 10-20
С	> 20-28
D	> 28-35
E	> 35
F	demand exceeds capacity

The I-490 approach and adjacent I-77 ramps will be modified to accommodate the new geometry of the I-490/E. 55th Street area and to correct current design deficiencies. The existing I-77 on ramp configuration consists of a one lane ramp from I-77N joining a one lane ramp from I-77S to form a two-lane ramp that then enters I-490E with an inside merge. In the Recommended Preferred Alternative, the inside merge will be eliminated by merging the two-lane ramp down to one lane before reaching I-490. The single lane on ramp will then join into I-490E as an add-lane. The add-lane will continue eastbound and terminate as an exclusive right-turn lane at E. 93rd Street. The No Build and Build lane use configuration at the I-490/I-77 interchange is illustrated in **Appendix A, Exhibit 2**.

To ensure acceptable operations, the proposed configuration was analyzed as shown below. The freeway elements are labeled in **Appendix A, Exhibit 3a**.

- I-490 mainline, west of the I-77 on ramp, was analyzed as basic freeway segment (F-4 and F-8).
- The one-lane ramps from I-77N and I-77S to I-490E were analyzed by doubling the volume on the ramps and analyzing as two-lane basic freeway segments (F-1 and F-2).
- The one-lane I-77 on ramp was analyzed by doubling the volume on the ramp and analyzing as a two-lane basic freeway segment after the merge and before the entrance to I-490E (F-3).
- The one-lane off ramp from I-490W to I-77 was analyzed as a diverge area (M-1).
- The one-lane off ramp from I-490W opens up to two lanes prior to splitting to I-77N and I-77S. The two-lane section was analyzed as a basic freeway segment (F-5).
- The one-lane ramps to I-77S and I-77N from I-490W were analyzed by doubling the volume on the ramps and analyzing as two-lane basic freeway segments (F-6 and F-7).

3.2.2 Highway Capacity Software Analysis

Results indicate that each freeway segment and ramp will operate at LOS A or LOS B in both the AM and PM peak hours in the 2020 Build condition. The identification number in parenthesis corresponds to the HCS results provided in **Appendices H** and **Appendix I** and summarized in **Appendix A**, **Exhibit 3a**.

3.3 TURN LANE LENGTHS

The necessary turn lane lengths were determined for the thirteen intersections along the proposed boulevard. All turn lane length computations are based on proposed lane use and design year (2020) traffic. Calculations were performed according to ODOT's *Location and Design Manual (L&D)*, *Volume 1*. If results indicate the turn lane is blocked by through back-up, the required turn lane length was dictated by the back-up length. In some instances, the through backup exceeded maximum turn lane length in accordance to *ODOT L&D Volume 1*, Sections 401.6.1 and 401.6.3. In these situations, the turn

lanes were limited to the maximum length. **Table 4, page 8** shows the results of the turn lane length computations for each intersection.

Table 4 also lists the actual turn lane length provided in the preliminary design. There are some locations where the required length based on ODOT's methodology cannot be met due to geometric or property impact considerations. For these locations, average queue lengths were observed using SimTraffic. SimTraffic takes into account the signal timing and progression optimization that was performed in Synchro and records the maximum back of queue observed for every two minute period. The average queue is the average of all the two minute maximum queues. Average queues results were available for each movement during each peak hour analyzed. The maximum of these results were used to evaluate turn lane lengths. At several locations where turn lane lengths as specified by ODOT's methodology could not be met, adequate storage could be provided based on the SimTraffic results. These locations are indicated in **Table 4**.

A total of six intersections have at least one exclusive turn lane in which the length will not meet the requirements of either ODOT's methodology or SimTraffic. These turn lanes are illustrated with italicized text within **Table 4**. Several of these locations are limited by the proximity of the existing adjacent intersection. Another constraint that limits the turn lane lengths includes nearby existing bridges that would add substantial cost to the project. The existing Euclid Corridor BRT also creates constraints for providing additional length along Euclid Avenue. An explanation of these limitations is included in **Table 4**.

The majority of the turn lane length requirements are dictated by through back-up. For those locations in which the hourly volumes are low and storage requirements are minimal but the through backup creates long turn lanes, it is recommended that these lengths be revisited and possibly shortened during detail design.

Table 4: Turn Lane Lengths

E-W Road	N-S Road	Direction	ODOT Methodology SimTraffic					
			Turn Lane Length (includes 50' taper)	Through Backup Based on Storage (ft) (does not include 50' taper)	Actual Turn Lane Length Required (based on Calculations)	Average Queue – (ft) *	Actual Length Provided (ft)	If not met, reasons why
Quadrant	E55th	WB Left	400	0	400		440	
		WB Right	325	0	325		440	
		SB Left	375	750	650	145	485	Existing bridge over RTA Provided length exceeds average queue length required per SimTraffic
Boulevard	Quadrant	WB Left	386	750	650		650	
		NB Left	225	0	225		300	
		NB Left (2)	175	0	175		300	
		NB Right	375	0	375		375	
Boulevard	Kinsman	EB Left	161	775	650	185	290	Proposed bridge over Kingsbury Valley Provided length exceed average queue length required per SimTraffic
		WB Left	161	725	650	327	340	Proposed bridge over RTA Provided length exceed average queue length required per SimTraffic
		NB Left	400	250	400	139	390	Limited by existing E. 69th Street Provided length exceed average queue length required per SimTraffic
		SB Left	100	200	250	77	220	Existing bridge over RTA Provided length exceed average queue length required per SimTraffic
Boulevard	E75th	EB Left	211	725	650		650	0 1 1
		WB Left	161	725	650	292	400	Storage space split with E. 79th Provided length exceed average queue length required per SimTraffic
		NB Left	100	100	150		150	
		SB Left	100	100	150	96	140	Limited by existing Grand Avenue Provided length exceed average queue length required per SimTraffic
Boulevard	E79th	EB Left	211	725	650	427	460	Storage space split with 75th Provided length exceed average queue length required per SimTraffic
		WB Left	386	650	650		650	
		NB Left	225	400	450		450	
		NB Right	300	400	450		450	
		SB Left	100	400	450		450	
Boulevard	Buckeye	EB Left	161	675	650		650	
		WB Left	311	<i>675</i>	650	302	290	Storage space split with Woodland (40 vehicles in the AM, 140 vehicles in the PM)
		NB Left	325	550	600	311	425	Commercial building to the north Provided length exceed average queue length required per SimTraffic
		SB Left	100	400	450	175	225	Existing bridge over RTA Provided length exceed average queue length required per SimTraffic
Boulevard	Woodland	EB Left	161	775	650	374	295	Storage space split with Buckeye (10 vehicles in the AM, 10 vehicles in the PM)
		WB Left	161	725	650		650	
		NB Left	375	175	375		375	
		SB Left	200	175	225		225	

^{*}SimTraffic average queues results were available for each movement during each peak hour analyzed. The maximum of these results were used to evaluate turn lane lengths.

The Opportunity Corridor

E-W Road	N-S Road	Direction	ODOT Methodology			SimTraffic		
			Turn Lane Length (includes 50' taper)	Through Backup Based on Storage (ft) (does not include 50' taper)	Actual Turn Lane Length Required (based on Calculations)	Average Queue – (ft) *	Actual Length Provided (ft)	If not met, reasons why
Boulevard	E93rd	EB Left	600	825	650	232	460	Storage space split with Woodland
								Provided length exceeds average queue length required per SimTraffic
		EB Right	161	825	850	192	460	Drop lane - Limited by intersection with Woodland Avenue
								Provided length exceeds average queue length required per SimTraffic
		WB Left	311	550	600		600	
		NB Left	100	500	550	321	185	Storage space split with Woodland (10 vehicles in the AM, 10 vehicles in the PM)
		NB Right	325	500	550	321	225	Existing building to the east (200 vehicles in the AM, 180 vehicles in the PM)
		SB Left	100	525	575	487	290	Existing bridge over RTA (10 vehicles in the AM, 10 vehicles in the PM)
		SB Right	450	525	575	487	240	Existing bridge over RTA (220 vehicles in the AM, 320 vehicles in the PM)
Quincy	Boulevard	EB Left	100	100	150		250	
		EB Right	100	100	150		250	
		NB Left	311	850	650		650	
Cedar	Boulevard	EB Left	200	250	300	114	210	Limited by existing E. 103rd Street
		M/D L - ft	250	275	425	450	245	Provided length exceeds average queue length required per SimTraffic
		WB Left	250	375	425	159	345	Turn lane begins at E. 106th Street
		NID Laft	1.61	600	CEO	104	440	Provided length exceeds average queue length required per SimTraffic
		NB Left	161	600	650	184	440	Limited by existing Frank Avenue Provided length exceeds average queue length required per SimTraffic
		SB Left	211	525	575	148	255	Storage space split with Carnegie
		3B Leit	211	323	373	140	255	Provided length exceeds average queue length required per SimTraffic
Carnegie	Boulevard	EB Left	200	800	650	450	340	Limited by existing E. 102nd Street (10 vehicles in the AM, 70 vehicles in the PM)
		WB Left	300	850	650	477	250	Limited by existing E. 106th Street (180 vehicles in the AM, 150 vehicles in the PM
		WB Right	225	850	850	477	640	Limited by existing Stokes Boulevard
								Provided length exceeds average queue length required per SimTraffic
		NB Left	211	450	500	230	325	Storage space split with Cedar
								Provided length exceeds average queue length required per SimTraffic
		SB Left	261	500	550	253	335	TWLTL for drive to the north
								Provided length exceeds average queue length required per SimTraffic
Euclid	Boulevard	EB Left	425	500	550	442	150	Limited by existing BRT condition (160 vehicles in the AM, 290 vehicles in the PM)
		WB Left	425	525	575	251	120	Limited by existing BRT condition (40 vehicles in the AM, 290 vehicles in the PM)
		NB Left	261	350	400		400	
		NB Right	661	350	661		710	Drop lane
		SB Left	211	450	500	203	280	Storage space split with Chester
								Provided length exceeds average queue length required per SimTraffic
Chester	Boulevard	EB Left	300	600	650	257	300	Limited by existing E. 101st Street
		M/D L -ft	100	725	CEO	200	F20	Provided length exceeds average queue length required per SimTraffic
		WB Left	100	725	650	290	530	Limited by existing E. 107th Street Provided length exceeds average queue length required per SimTraffic
		NB Left	261	500	550	128	285	
		IND LEIL	201	200	550	128	285	Storage space split with Euclid Provided length exceeds average queue length required per SimTraffic
		SB Left	211	400	450	210	180	Limited by existing Park Lane/Ansel (40 vehicles in the AM, 40 vehicles in the PM)

^{*}SimTraffic average queues results were available for each movement during each peak hour analyzed. The maximum of these results were used to evaluate turn lane lengths.

The Opportunity Corridor

4.0 CONCLUSION

Throughout the ODOT PDP, a No Build and various Build alternatives for the Opportunity Corridor project have been considered. Through coordination with the project's Steering Committee, ODOT, the City of Cleveland and the general public, a Recommended Preferred Alternative has been identified as described in **Section 1.0**. A series of traffic operational analyses were performed using 2020 AM and PM peak hour volumes using both HCS and Synchro.

Typically, the City of Cleveland and ODOT prefer that all movements have a v/c ratio less than 0.9 and LOS D or better. For HCS analyses, they also utilize a methodology in which the approach delays are balanced - the highest north/south approach delay equal, or nearly equal, to the highest east/west approach delay. This methodology was used to analyze the 2020 AM and PM peak hour volumes to establish the final lane use for the recommended preferred alternative. The roadway network established from HCS analyses was then modeled using Synchro to determine operations with optimized signal coordination along the corridor. The Synchro results are summarized in **Appendix F** and **Appendix G**.

Results of the HCS analysis indicate twelve of the thirteen intersections operate with acceptable levels of service and all movements with v/c ratios less than 0.9 and LOS a D or better in both the AM and PM peak hours.

HCS analyses indicate the northbound left turn lane at the Euclid intersection operates below acceptable levels for the PM Peak. Euclid Avenue currently operates as a Bus Rapid Transit (BRT) corridor. It was constructed in 2008 and creates a constraint when designing E. 105th Street to meet the operational requirements of the project. HCS has limitations in modeling this intersection. To accommodate the protected bus movements, a "dummy" phase of 6.5 seconds was added to the eastbound and westbound left turn movements. This may have resulted in a conservative result. The northbound left turn volume is low (90 vehicles). Operational concerns will be mitigated by providing a turn lane that is 400 feet to accommodate storage, deceleration, taper, and through back up. In addition, there are several east-west roadways that intersect with E. 105th Street and provide alternate routes to Euclid Avenue. Given the limitations in the analysis methodology, the overall operation of the intersection (LOS D), the low v/c ratios, the low turning volume, the provided storage, and the geometric constraints, further changes to this intersection are not recommended.

Turn lane length calculation were also performed for each exclusive turn lane proposed in the recommended preferred alternative. Calculations were performed according to ODOT's *Location and Design Manual (L&D), Volume 1*. If results indicated the turn lane is blocked by through back-up, the required turn lane length was dictated by the back-up length. In some instances, the through back-up exceeded maximum turn lane length. For locations in which these required lengths could not be met, SimTraffic was used to determine turn lane length requirements. Six of the thirteen intersections have at least one exclusive turn lane in which the length designed will not meet the requirement in accordance to ODOT's methodology or SimTraffic. Several of these locations are limited by the proximity of existing adjacent intersections or an existing bridge. Extending turn lane lengths at these locations would add substantial cost to the project.

The analyses results in the development of the final lane use and footprint that will be used to measure impacts, complete the Environmental Impact Statement and complete final design. The final lane use and LOS results based on HCS analysis are shown in **Exhibits 3a-3c** in **Appendix A**.

Appendix A: Exhibits

Exhibit 1: Study Area

Exhibit 2: Build and No Build I-490/I-77 Ramp Configuration

Exhibit 3a-3c: Lane Use and Level of Service

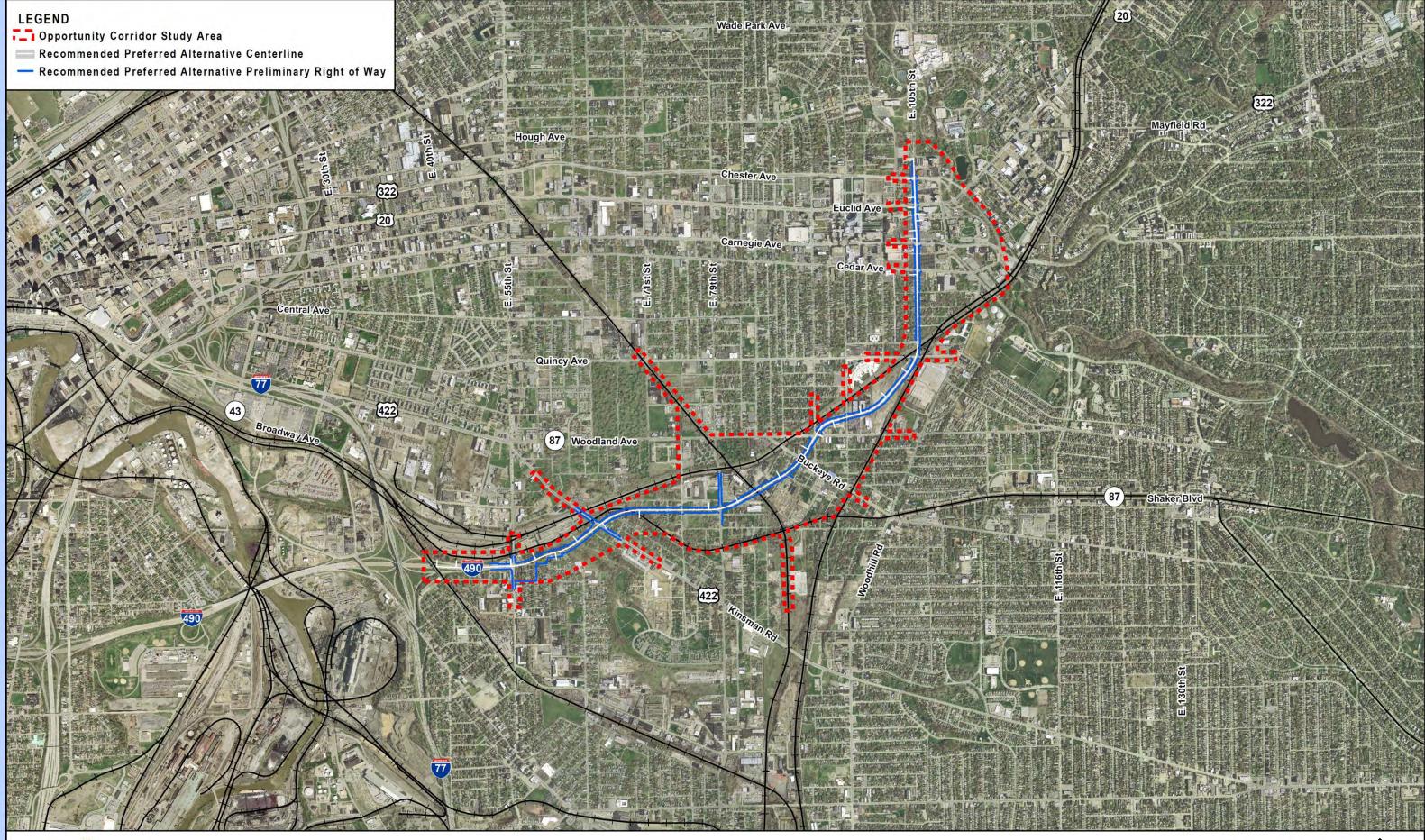
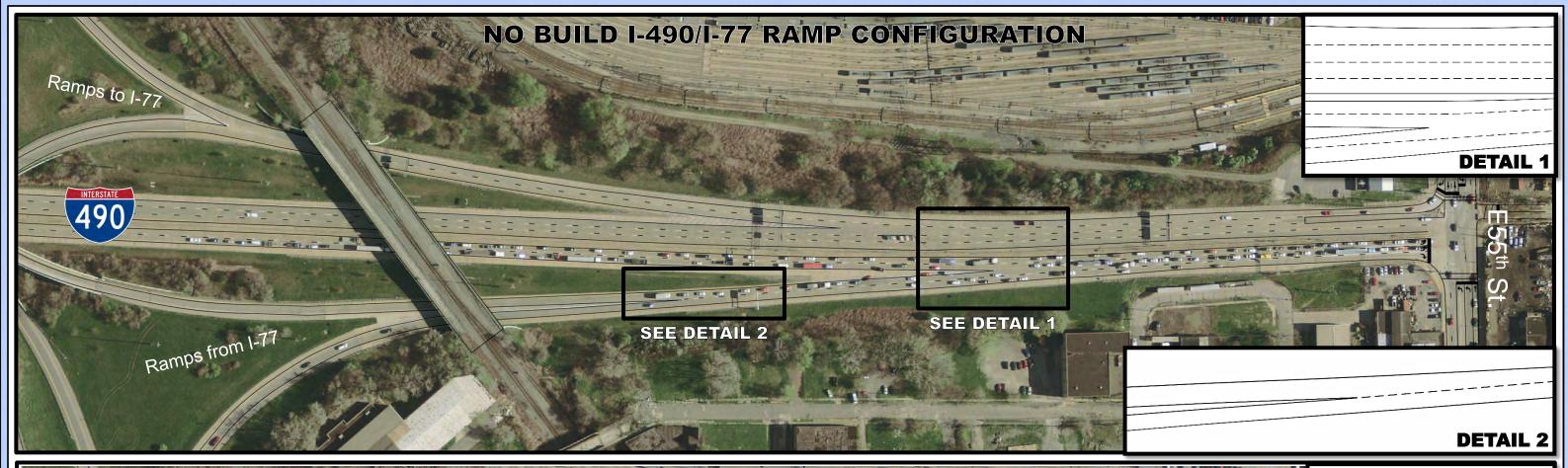
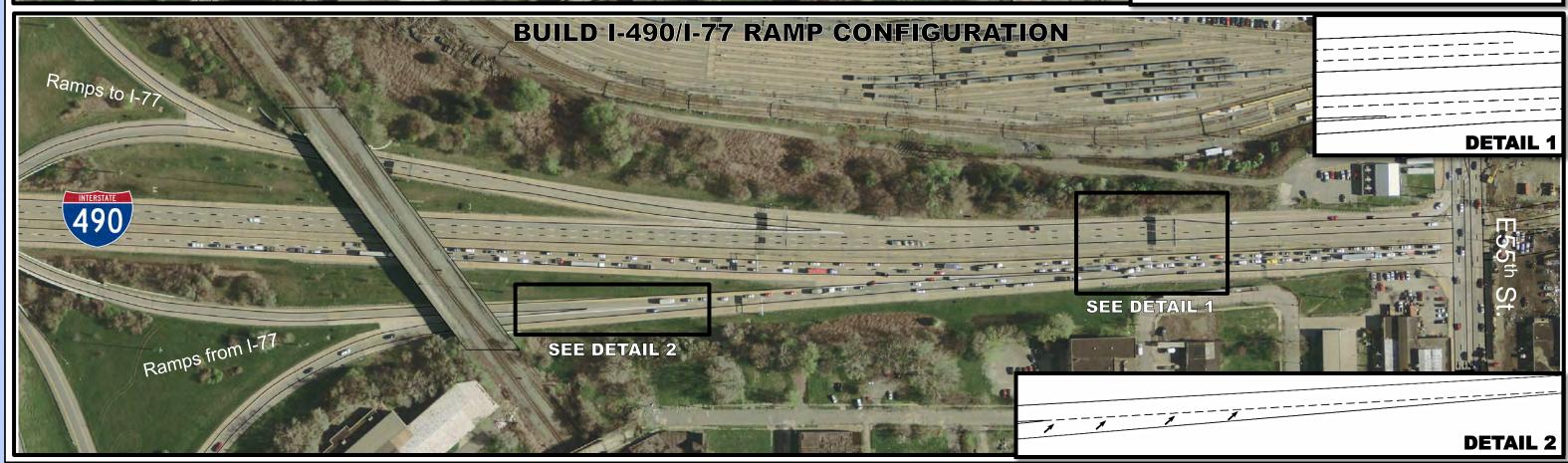




Exhibit 1: Study Area

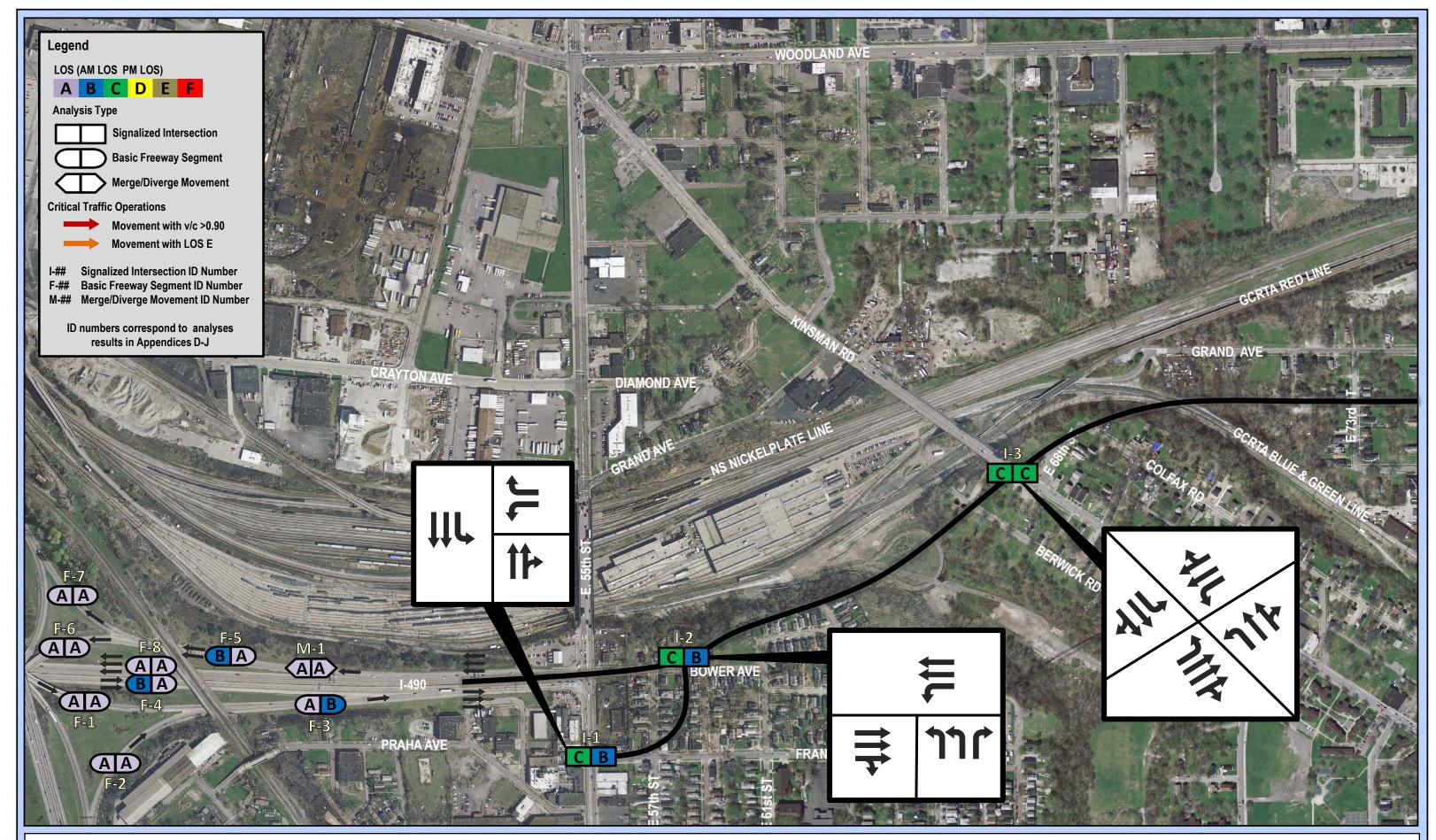


Exhibit 3a: Lane Use and Level of Service HCS Results - Balanced Approach Delays Build Network (West Section)

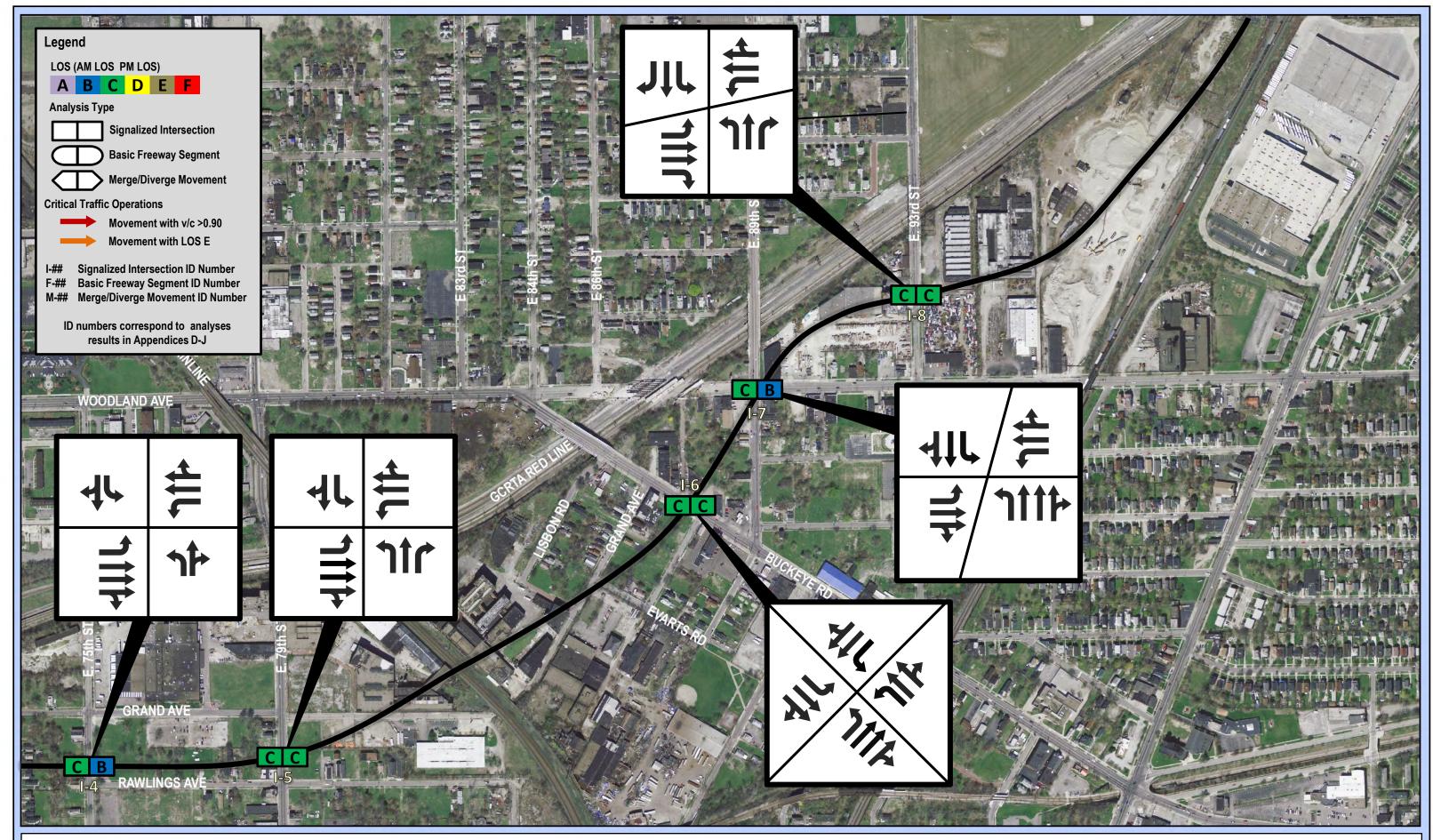


Exhibit 3b: Lane Use and Level of Service HCS Results - Balanced Approach Delays Build Network (Central Section)

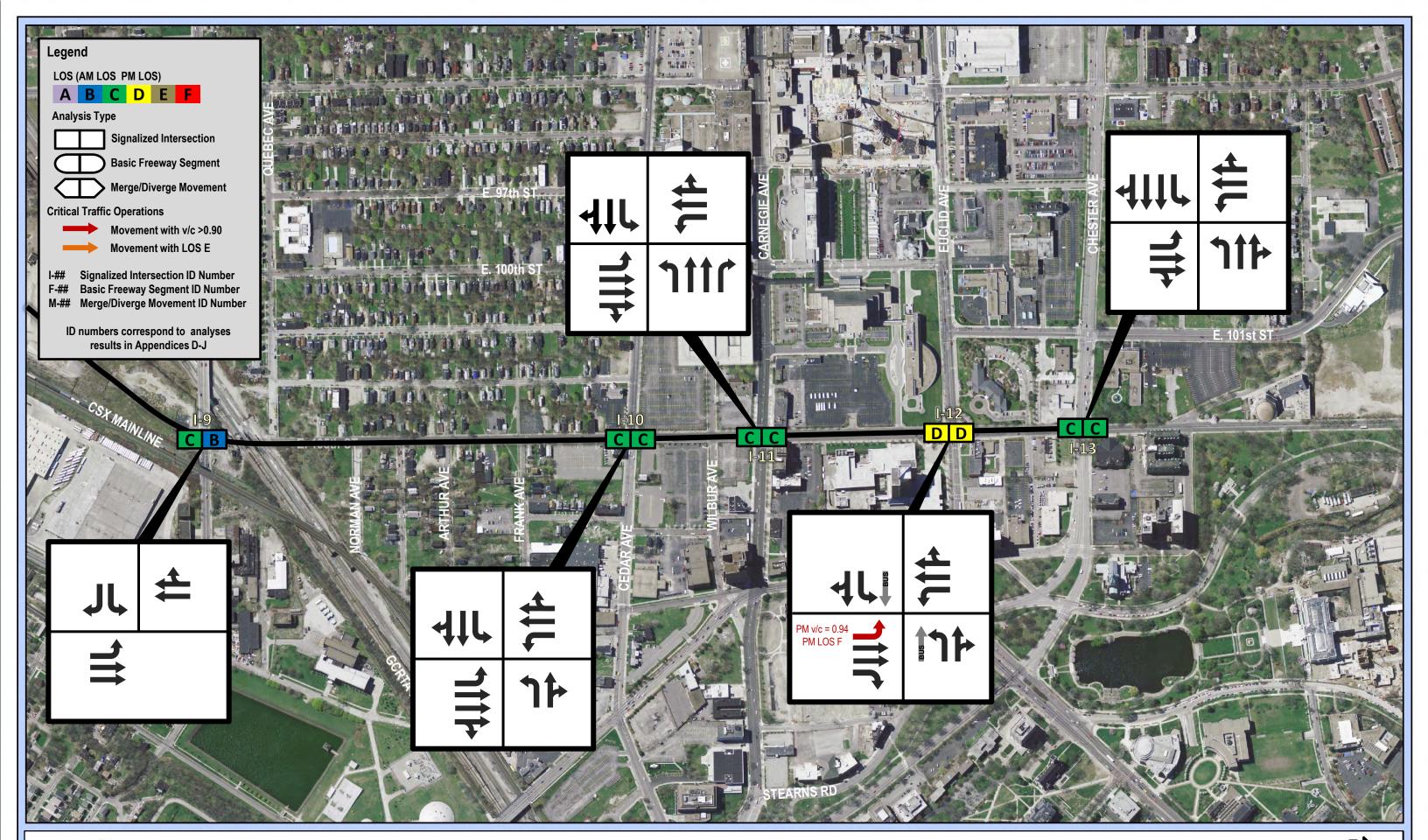


Exhibit 3c: Lane Use and Level of Service HCS Results - Balanced Approach Delays Build Network (East Section)

NOT TO SCALE

Appendix B: Certified Traffic

OHIO DEPARTMENT OF TRANSPORTATION

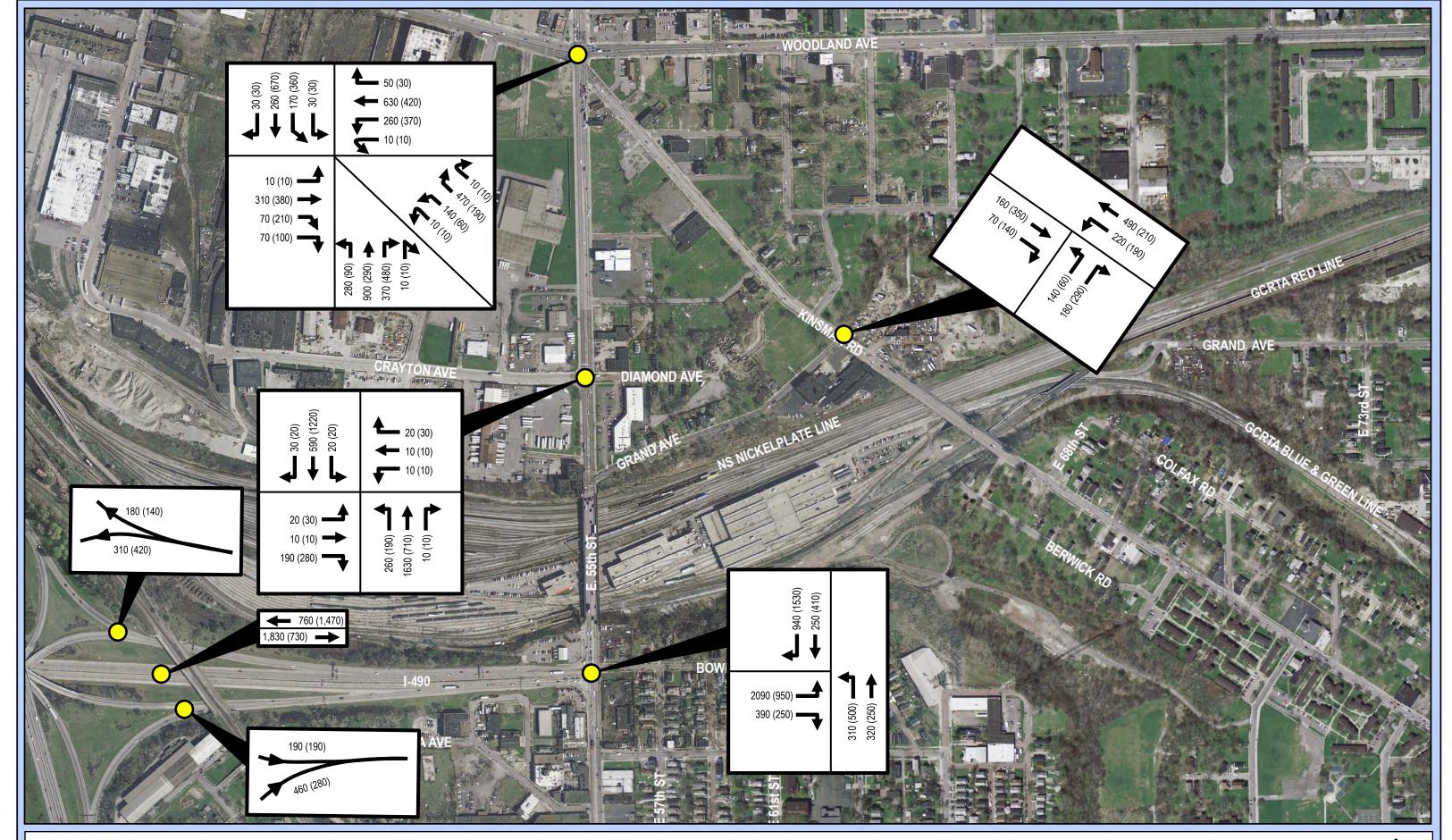
CENTRAL OFFICE • 1980 WEST BROAD STREET • COLUMBUS, OH 43223 JOHN R. KASICH, GOVERNOR • JERRY WRAY, DIRECTOR

April 11, 2012

Matthew Wahl, P.E. HNTB Ohio, Inc. 1100 Superior Avenue, Suite 1330 Cleveland, Ohio 44114

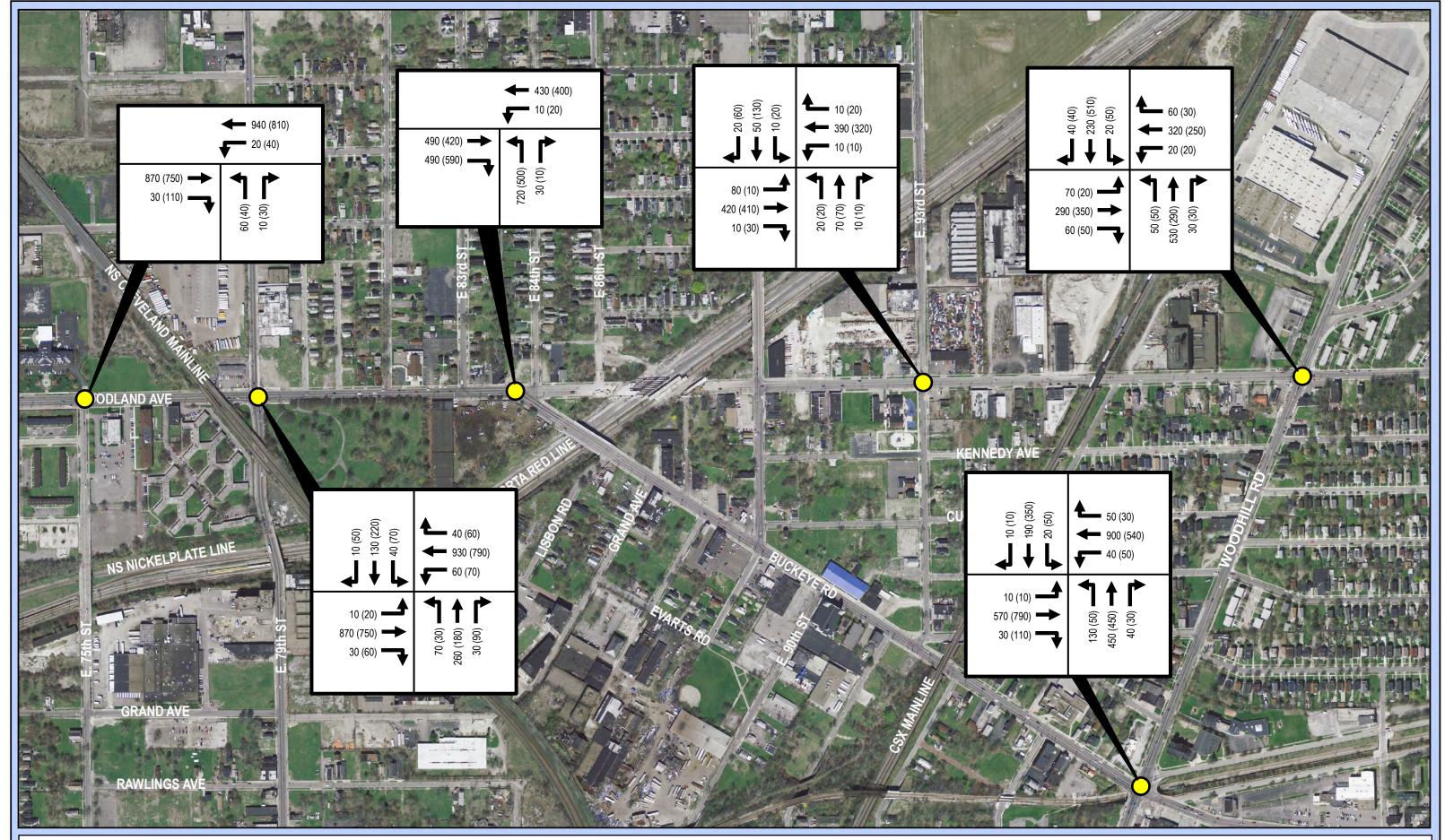
RE: CUY-Opportunity Corridor, PID 77333

Mr. Wahl:


In reply to a request received February 7, 2012, the review of the submitted traffic forecast has been completed. The changes previously requested by this office have been addressed and the final plates submitted on April 11, 2012 are approved for use. If you have any questions, please contact me at (614) 752-5747 or at Joshua. Kieselbach@dot.state.oh.us.

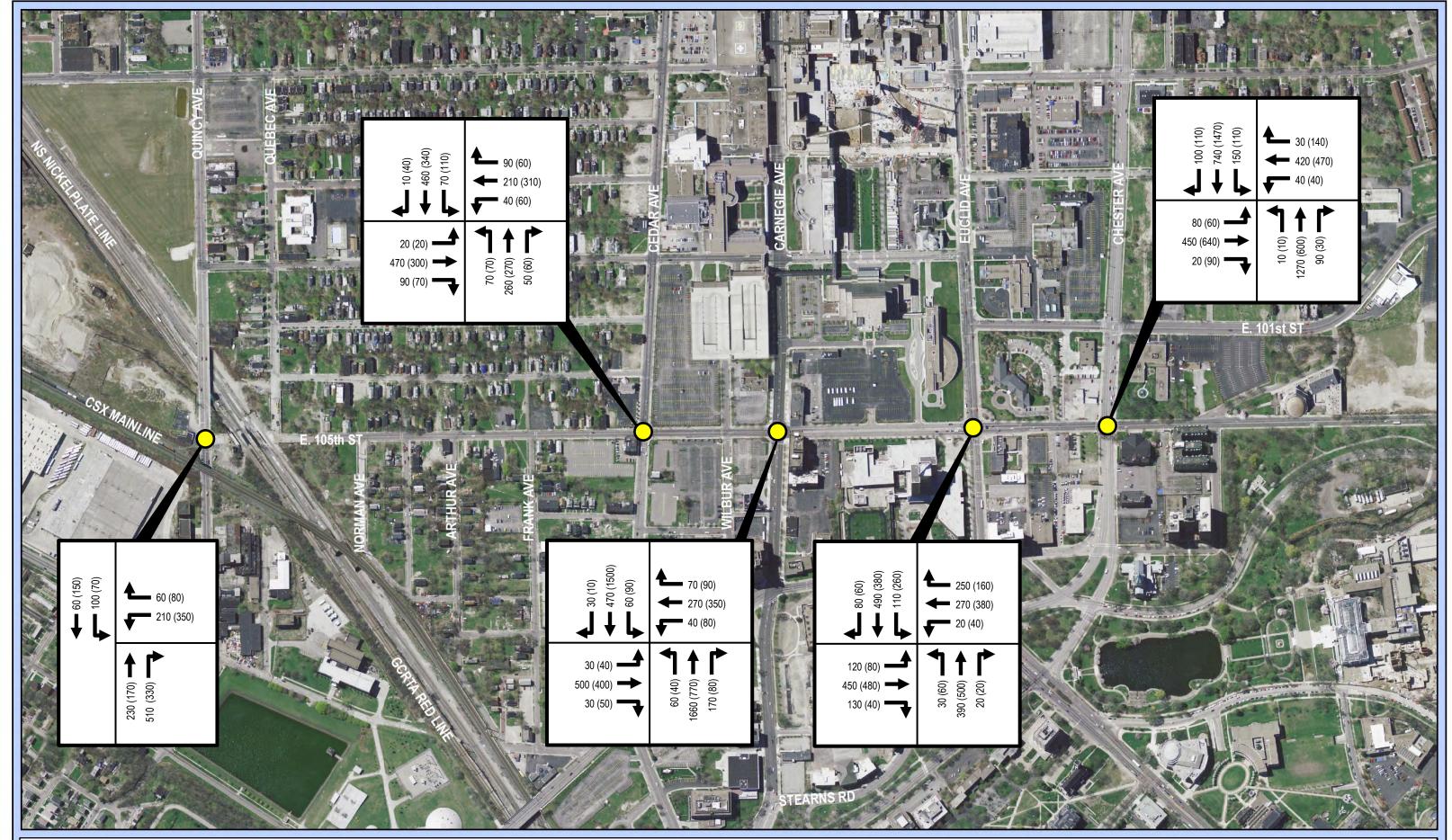
Sincerely,

Joshua Kieselbach, P.E. Modeling & Forecasting


Office of Statewide Planning & Research

c: M. Byram, OMP - File

Opening Day/Design Year 2020 No Build Network (West Section) AM (PM) Peak Hour Traffic

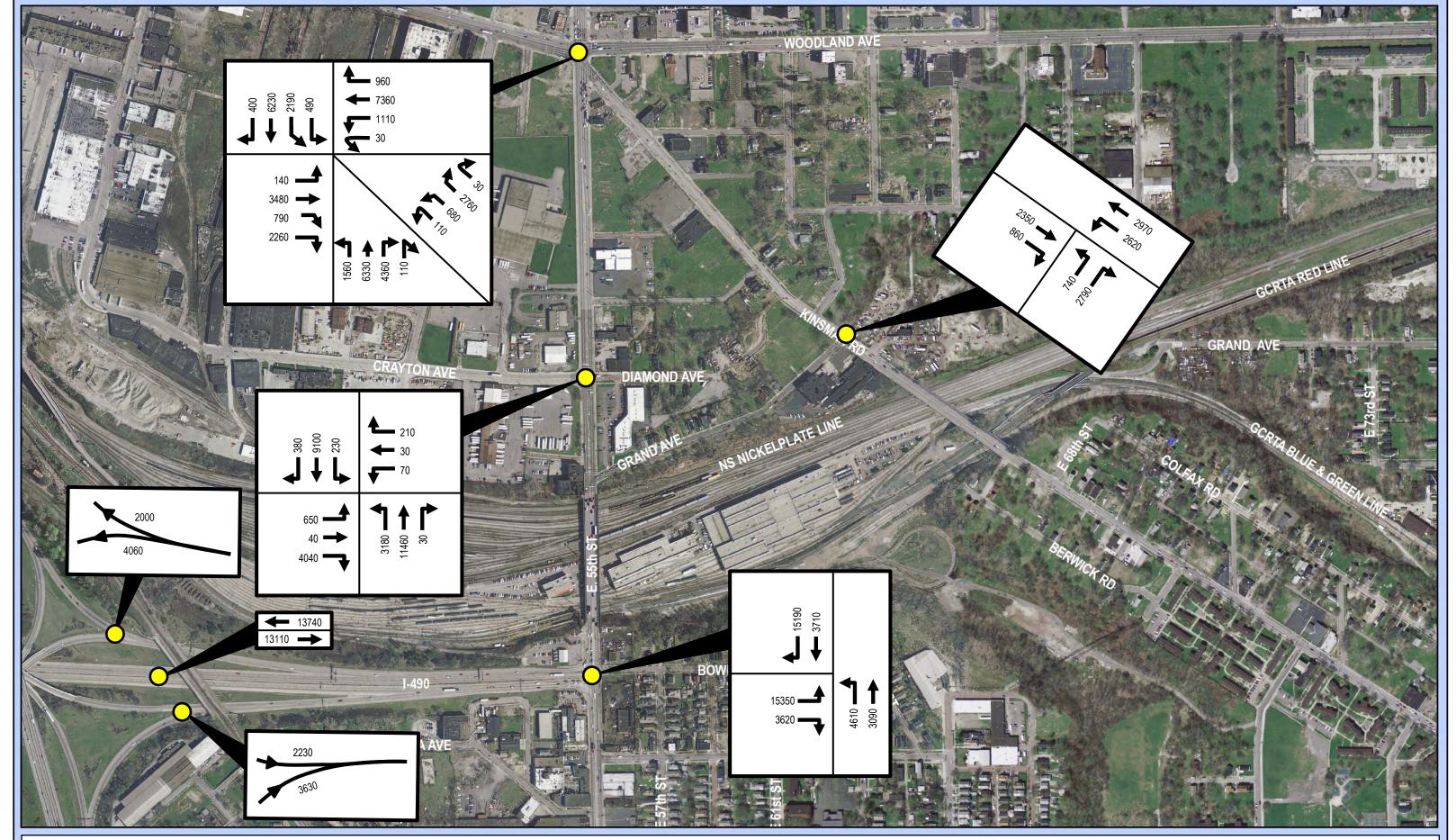


CUY-Opportunity Corridor

City of Cleveland, Cuyahoga County, Ohio

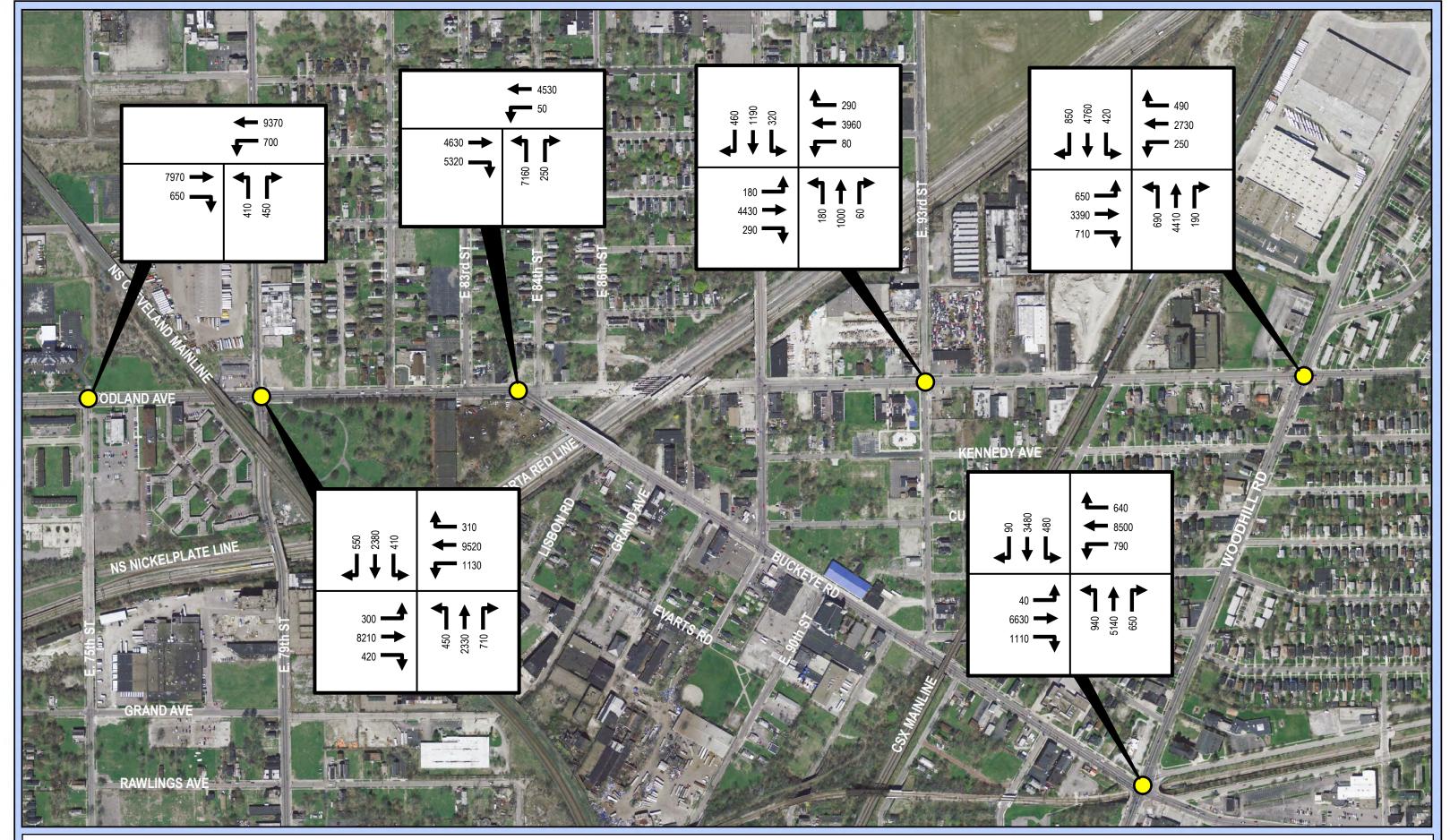
PID No. 77333

Opening Day/Design Year 2020 No Build Network (Central Section) AM (PM) Peak Hour Traffic

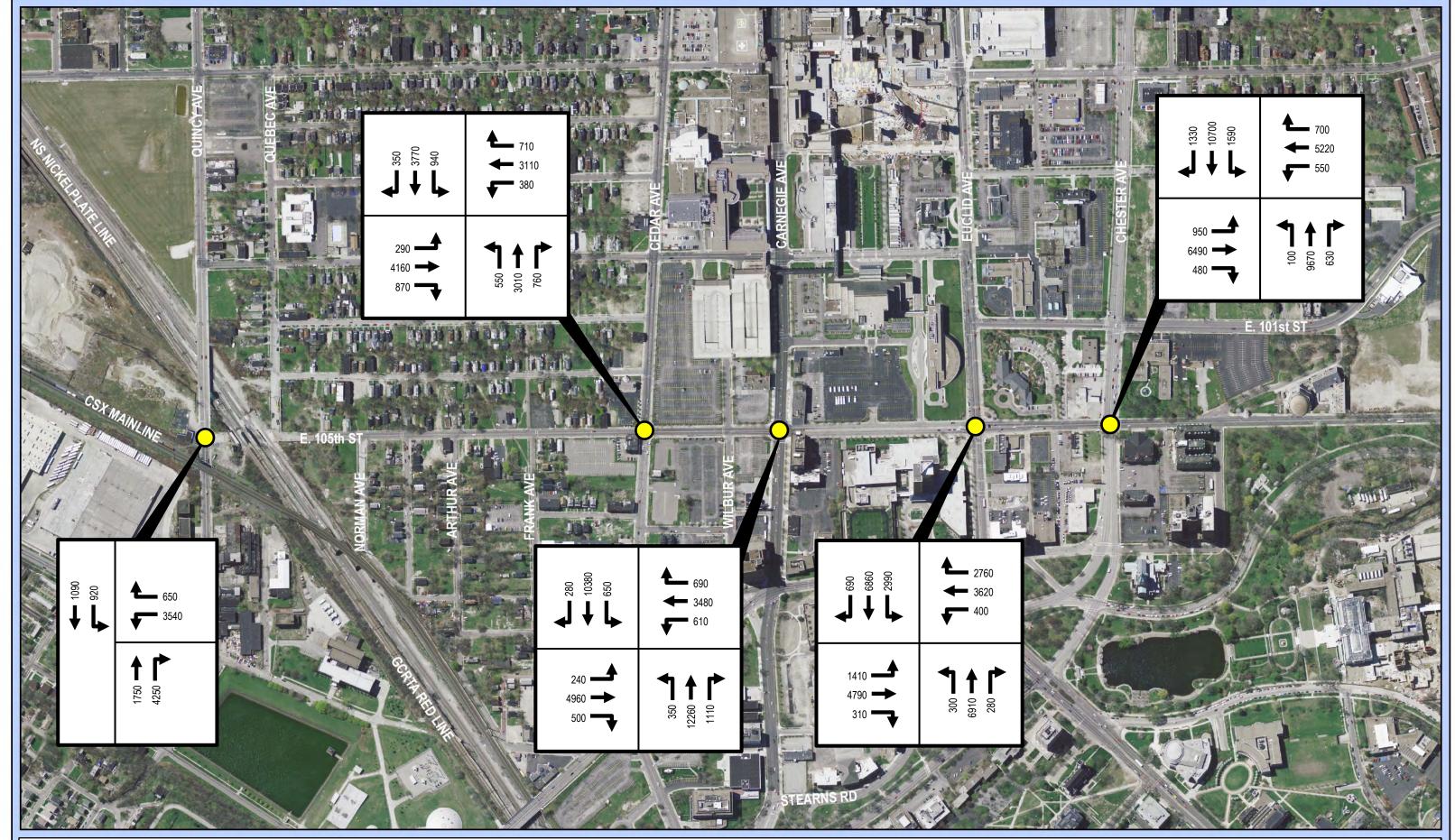


CUY-Opportunity Corridor

City of Cleveland, Cuyahoga County, Ohio

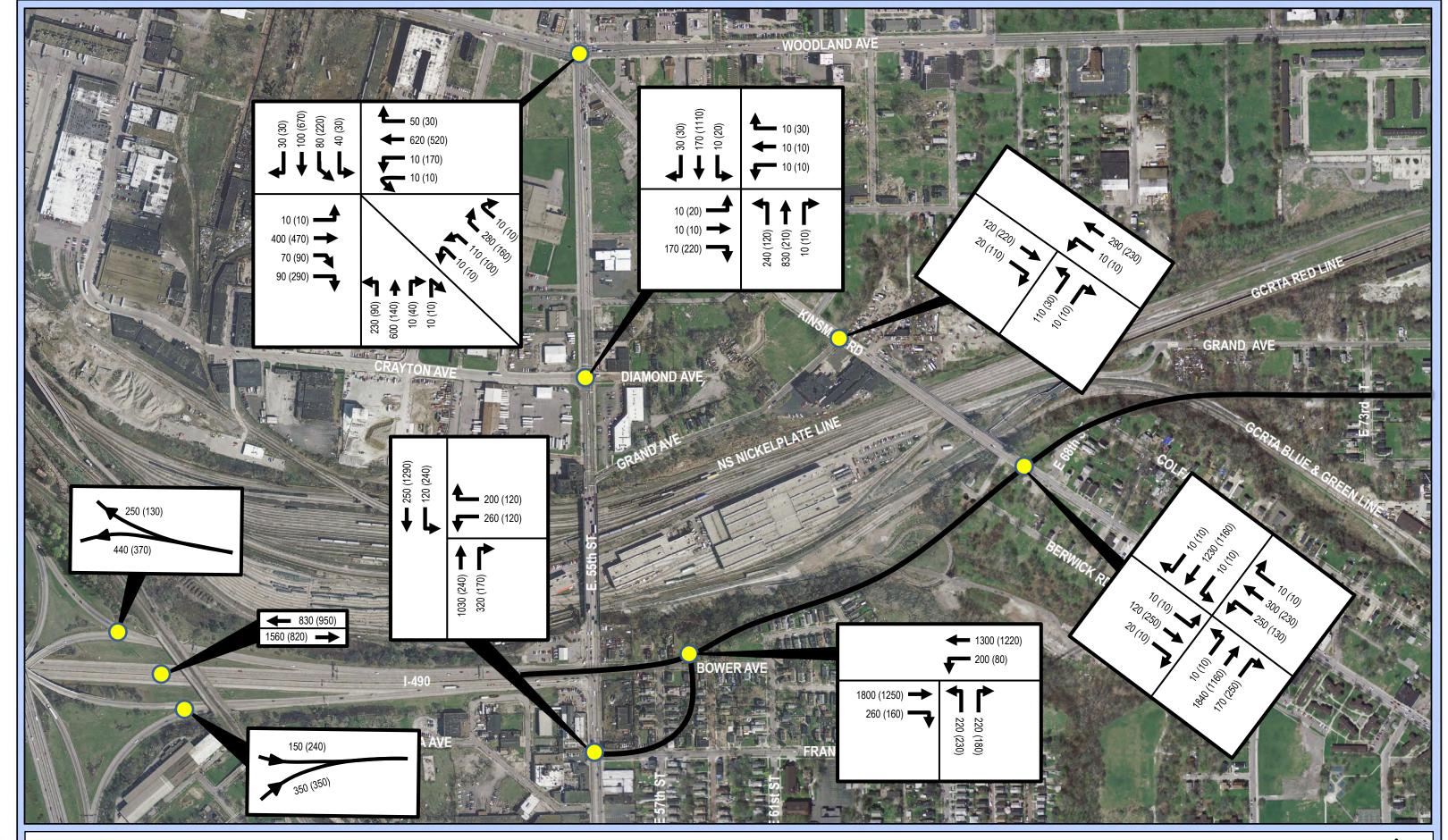

PID No. 77333

Opening Day/Design Year 2020 No Build Network (East Section) AM (PM) Peak Hour Traffic


Opening Day/Design Year 2020 No Build Network (West Section) ADT

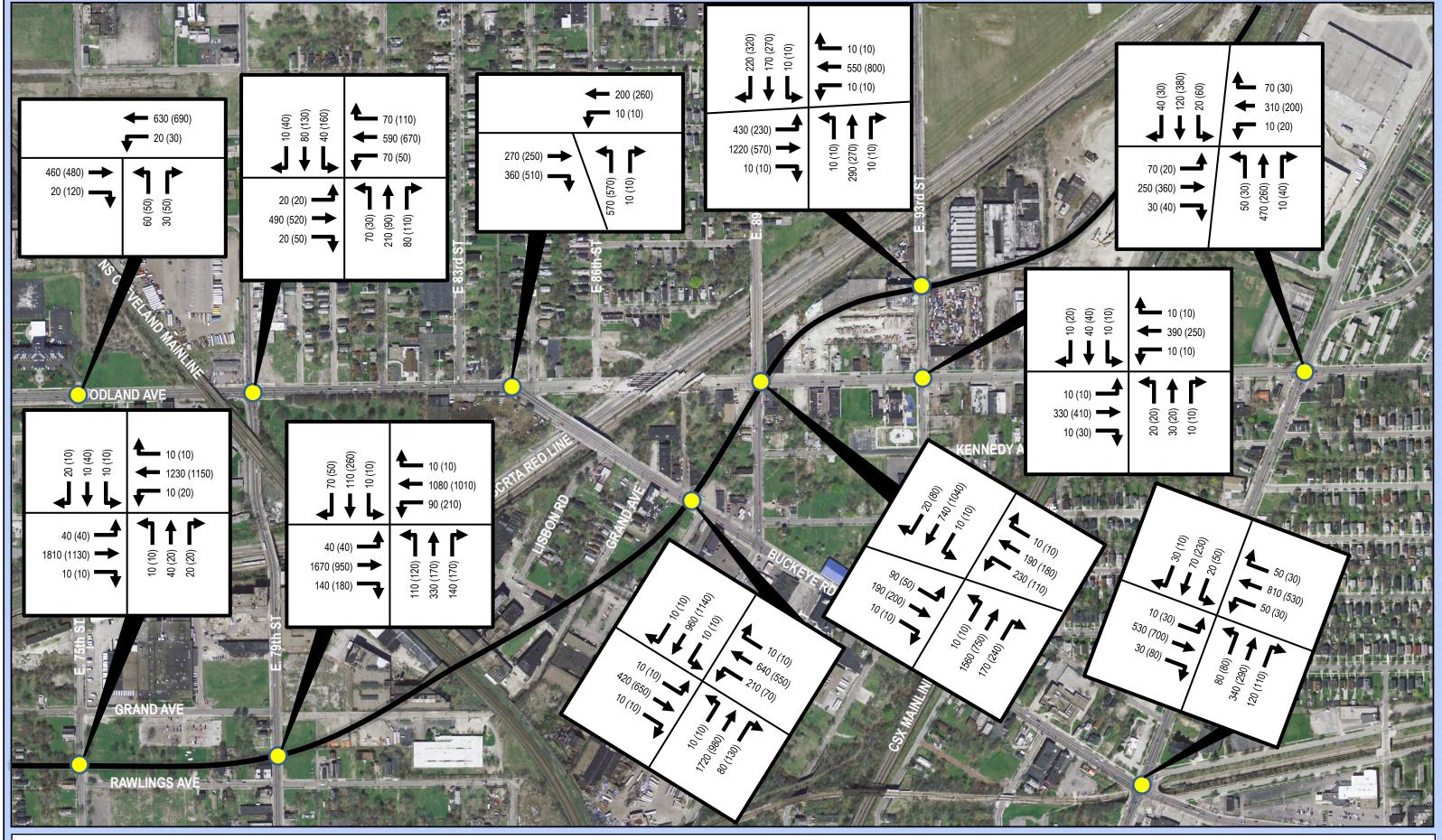
PID No. 77333

CUY-Opportunity Corridor City of Cleveland, Cuyahoga County, Ohio Opening Day/Design Year 2020 No Build Network (Central Section) ADT

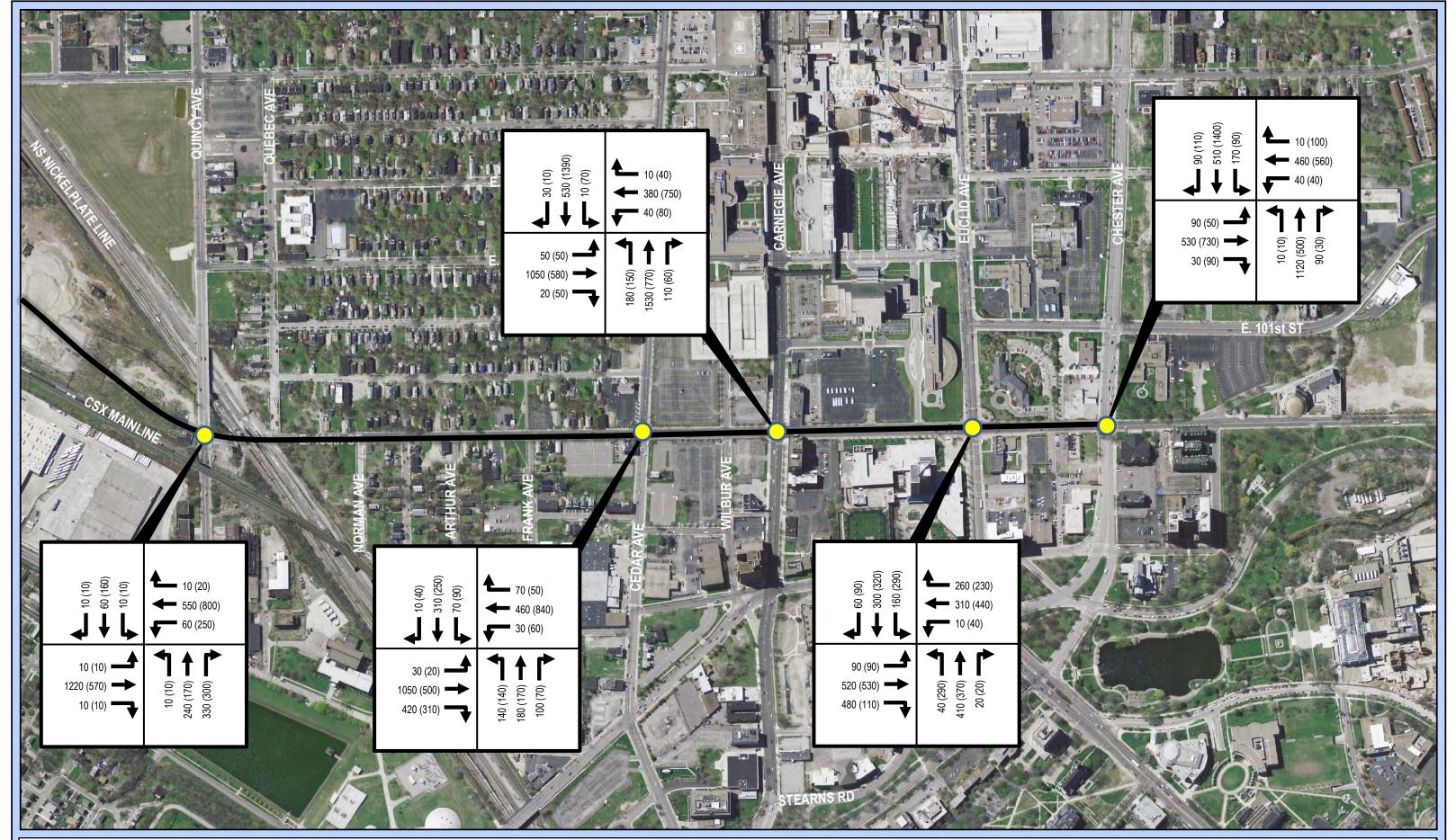


CUY-Opportunity Corridor

City of Cleveland, Cuyahoga County, Ohio

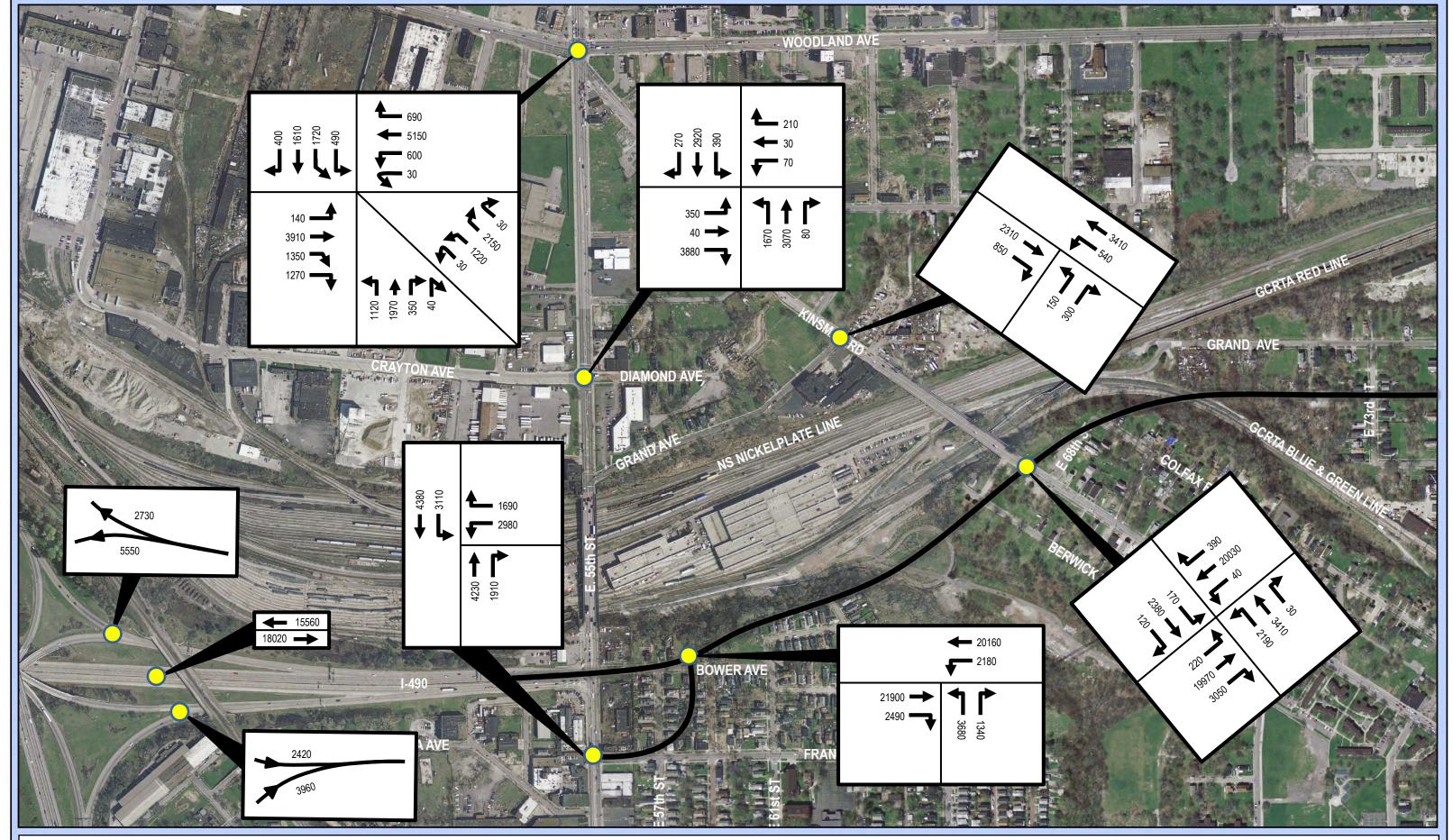

PID No. 77333

Opening Day/Design Year 2020 No Build Network (East Section) ADT



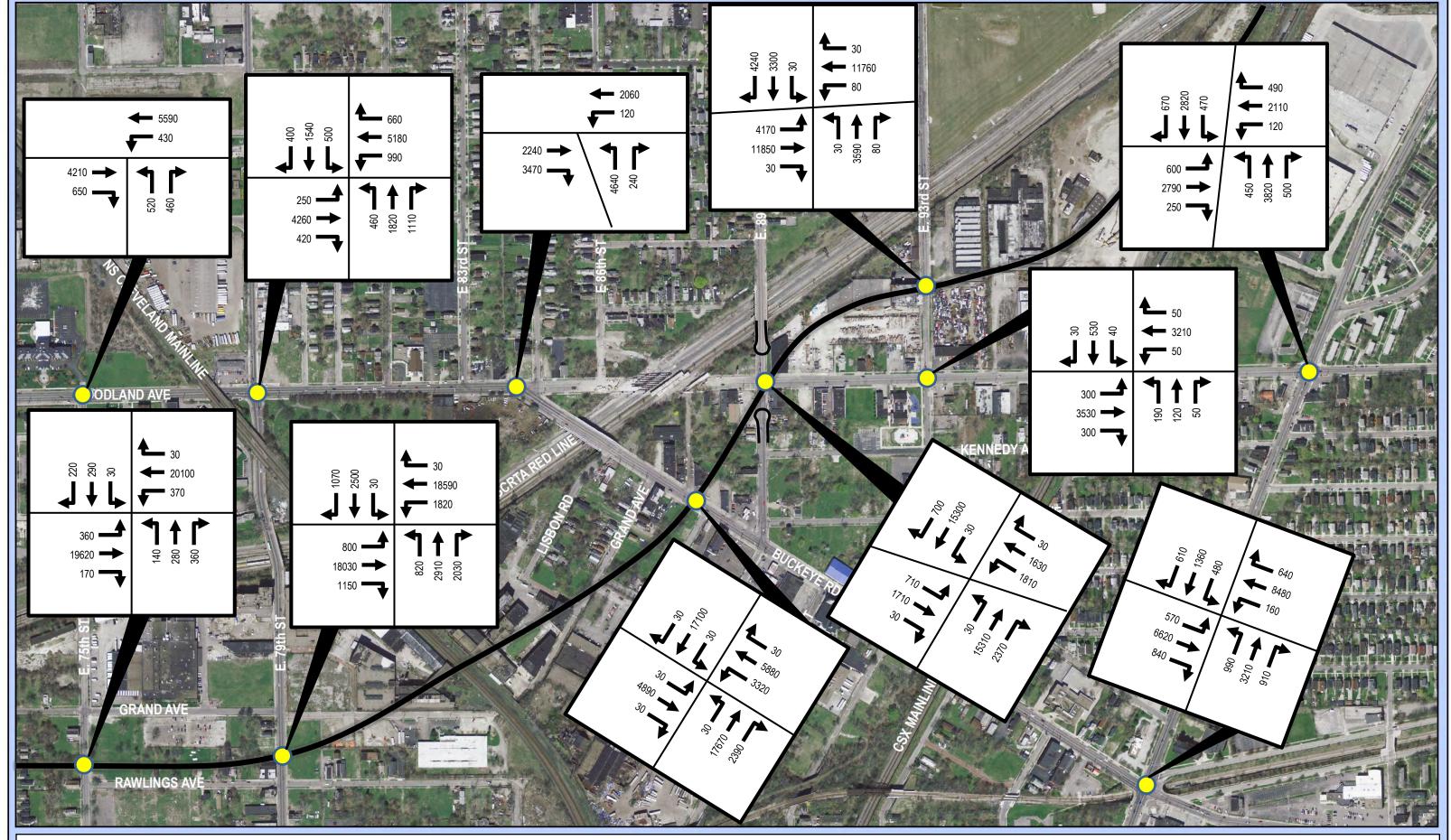
Opening Day/Design Year 2020 Build Network (West Section) AM (PM) Peak Hour Traffic

Opening Day/Design Year 2020 Build Network (Central Section) AM (PM) Peak Hour Traffic

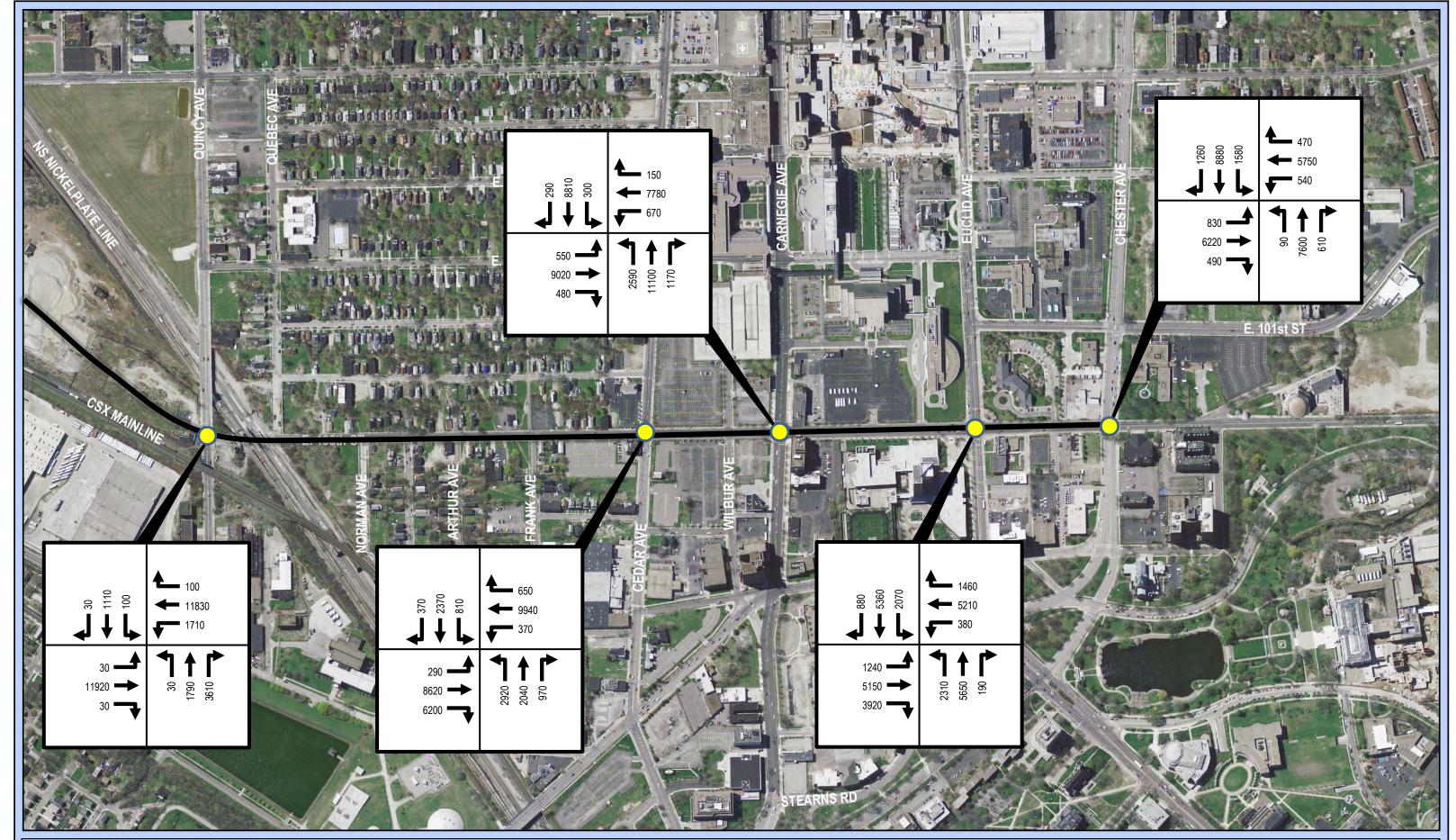


CUY-Opportunity Corridor

City of Cleveland, Cuyahoga County, Ohio


PID No. 77333

Opening Day/Design Year 2020 Build Network (East Section) AM (PM) Peak Hour Traffic



Opening Day/Design Year 2020 Build Network (West Section) ADT

Opening Day/Design Year 2020 Build Network (Central Section) ADT

Opening Day/Design Year 2020 Build Network (East Section) ADT

Traffic plates for the Opportunity Corridor Project (PID 77333) were certified by the Ohio Department of Transportation's Office of Technical Services on April 11, 2012. The certified traffic includes average daily traffic (ADT) volumes and AM and PM peak hour traffic volumes for the design year (2020) for the No Build and Build geometries.

Following traffic certification, geometric constraints were determined at the Boulevard's intersection with Quincy Avenue. A meeting with the City of Cleveland and the Ohio Department of Transportation (ODOT) was held on May 4, 2012 that resulted in agreement to close the eastern leg of Quincy Avenue. The certified traffic was manually rerouted to reflect revised traffic patterns due to this closure. The methodology for the traffic distribution is included within this document.

According to a select link analysis performed by the Northeast Ohio Areawide Coordinating Agency (NOACA), the majority of traffic using the existing east leg of Quincy Avenue travels to/from southeast of the study area. Based on this information, ADT and AM and PM peak hour turning movement traffic volumes were rerouted to use Buckeye Road and E. 93rd Street via Woodland Avenue. Details for each impacted movement at the E.105th Street/Quincy Avenue intersection are described in more detail below:

Westbound through movement

Traffic using Quincy Avenue from the east anticipated to continue through the intersection westbound is rerouted to use E. 93rd Street or Buckeye Road with the destination north of Quincy Avenue. Per the select link analysis, vehicles come from the south or southeast. Approximately half of the volume travels northbound on Buckeye Road and turns right onto the proposed boulevard. The rerouted traffic travels northbound along the Boulevard until it reaches Quincy Avenue where it is added to the left turn movement to travel west. The remaining half of the rerouted traffic travels north on Woodhill Road, west on Woodland Avenue, and north on E. 93rd Street. The traffic continues north through the intersection with the Boulevard towards Quincy Avenue.

Westbound to northbound movement

Traffic using Quincy Avenue from the east anticipated to turn right to head north on E. 105th Street is rerouted to use E. 93rd Street or Buckeye Road. Per the select link analysis, vehicles come from the south or southeast. Approximately half of the volume travels northbound on Buckeye Road and turns right onto the proposed Boulevard. The remaining half of the rerouted traffic travels north on Woodhill Road, west on Woodland Avenue, and north on E. 93rd Street. Volumes are added to the right turn movement at E. 93rd and the proposed Boulevard. The additional traffic from Buckeye Road and E. 93rd Street continues east on the boulevard and north on E. 105th Street.

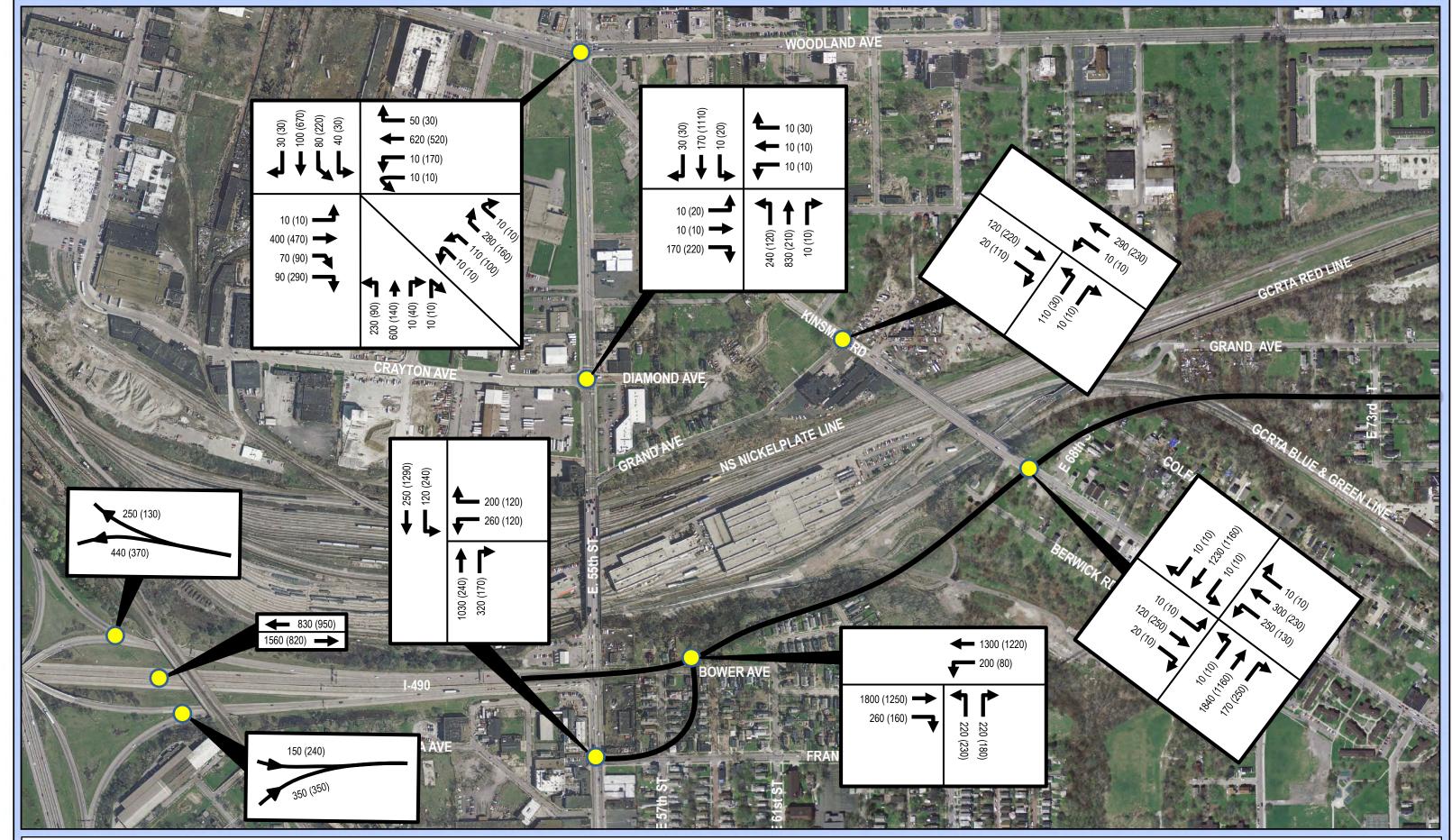
Westbound to southbound movement

The Travel Demand Model (TDM) showed a volume of zero for this movement so the minimum volume (10 vehicles for AM and PM peak hour and 30 vehicles for ADT) was included in the certified traffic plates. Therefore, the volume shown in the certified traffic is not rerouted.

Eastbound through movement

Traffic using Quincy from the west anticipated to travel through the intersection is rerouted to use E. 93rd Street. This traffic is added to the southbound through movement at the E. 93rd Street

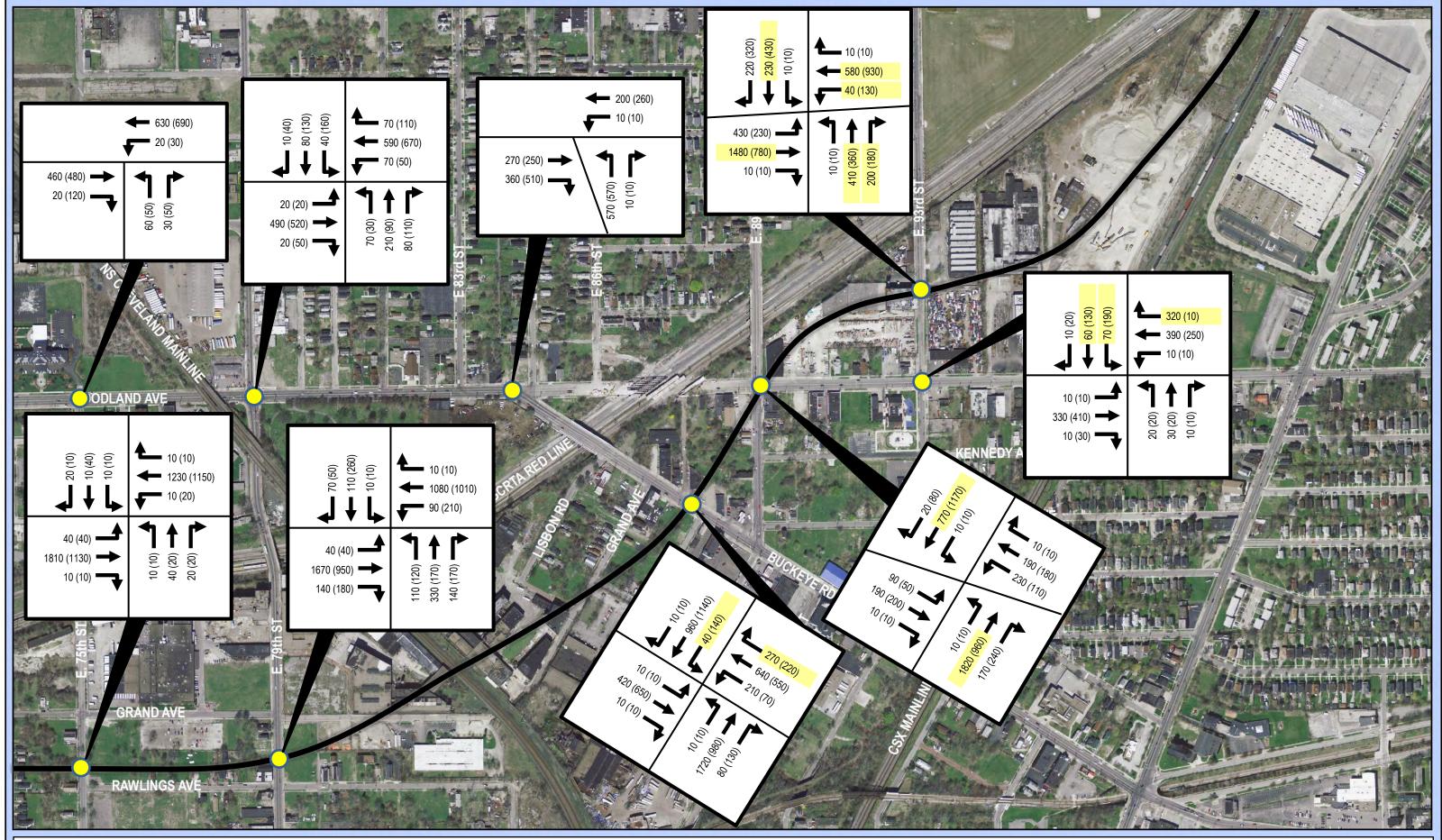
intersection with the Boulevard. At E. 93rd Street and Woodland Avenue this traffic turns left to travel south or southeast of the study area.


Northbound to eastbound movement

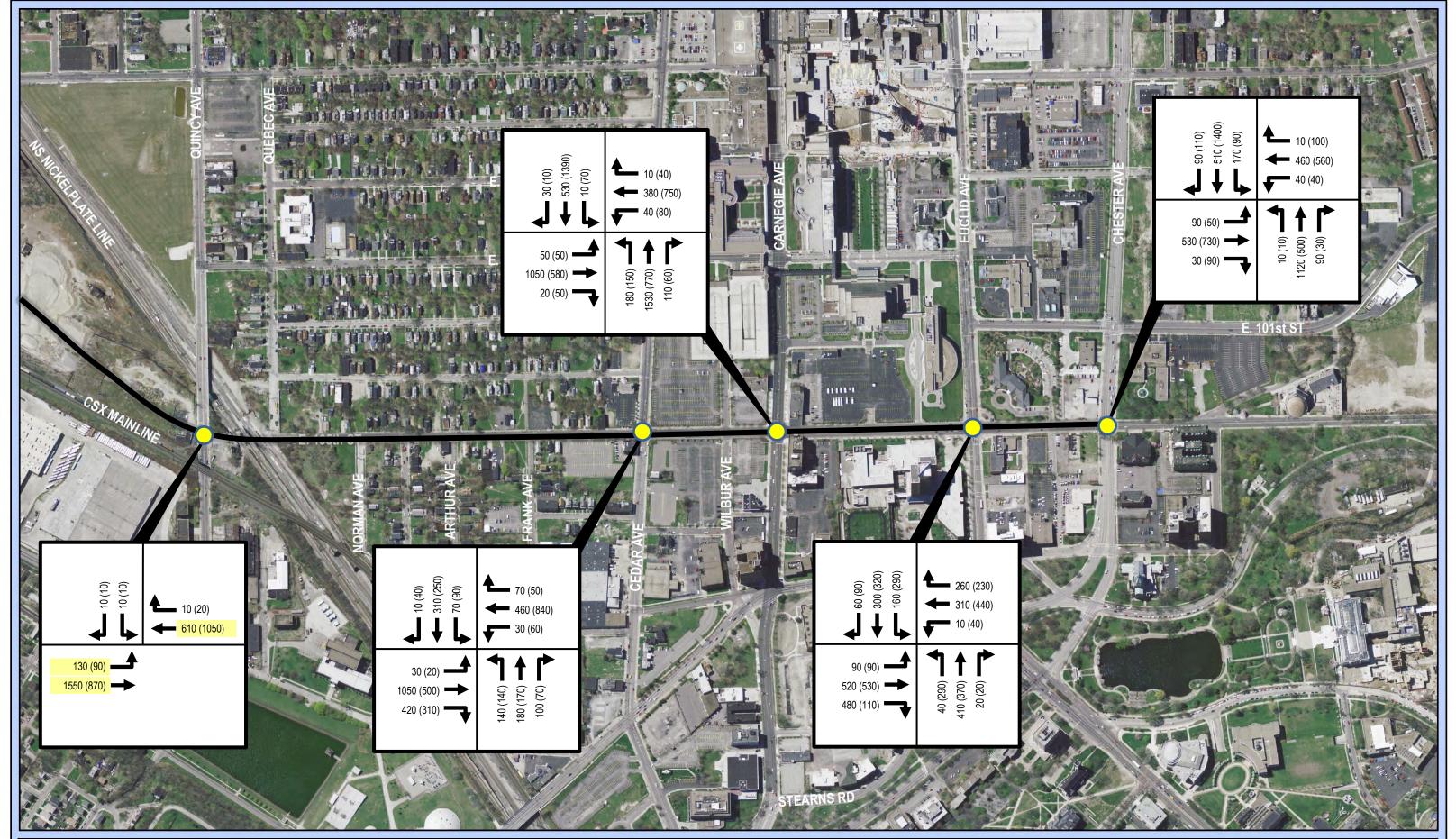
The TDM showed a volume of zero for this movement so the minimum volume (10 vehicles for AM and PM peak hour and 30 vehicles for ADT) was included in the certified traffic plates. Therefore, the volume shown in the certified traffic is not rerouted.

Southbound to eastbound movement

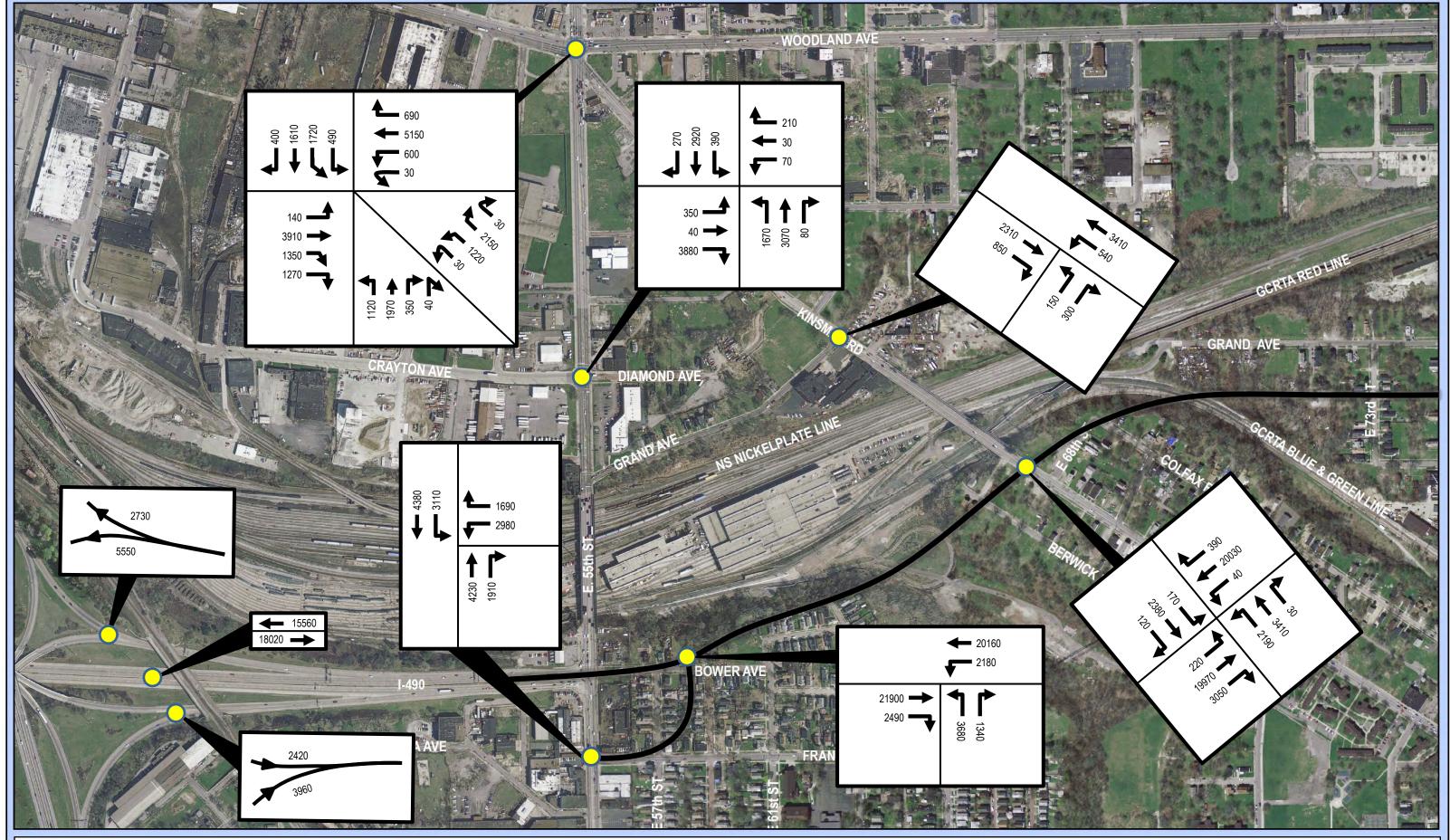
Traffic along E. 105th Street from the north anticipated to turn left at Quincy Avenue is rerouted to continue through on the Boulevard and access the east or southeast via E. 93rd Street or Buckeye Road. Approximately half of the volume turns left onto E. 93rd Street to travel south or southeast of the study area. The remaining half continues west along the proposed Boulevard until it reaches Buckeye Road, where it is added to the left turn movement to head south or southeast of the study area.


ADT and AM and PM peak hour turning movement traffic volumes were rerouted based on the traffic patterns described above.

Opening Day/Design Year 2020
Build Network (West Section) – Closure of East Leg at Quincy and Boulevard
AM (PM) Peak Hour Traffic

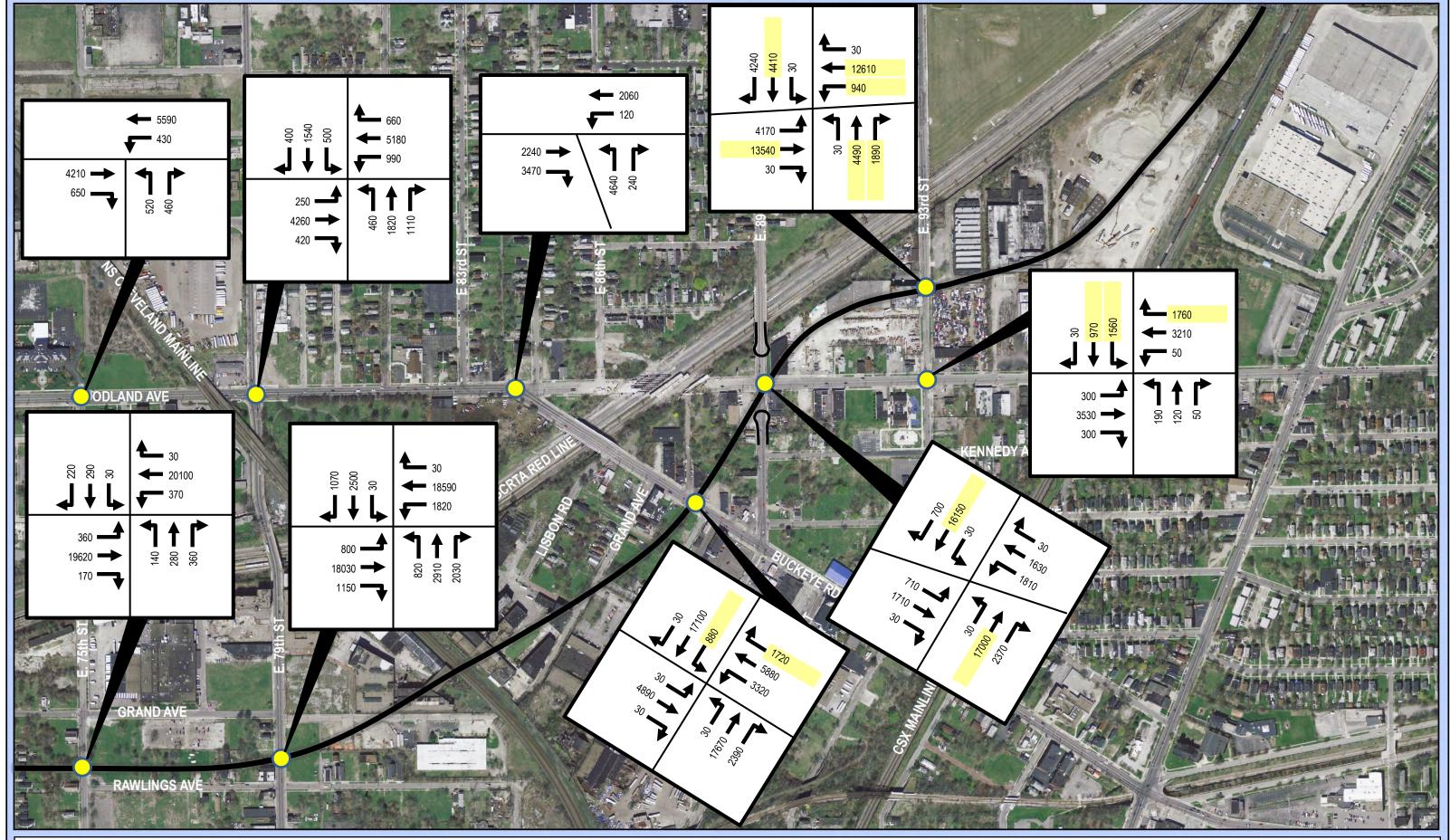


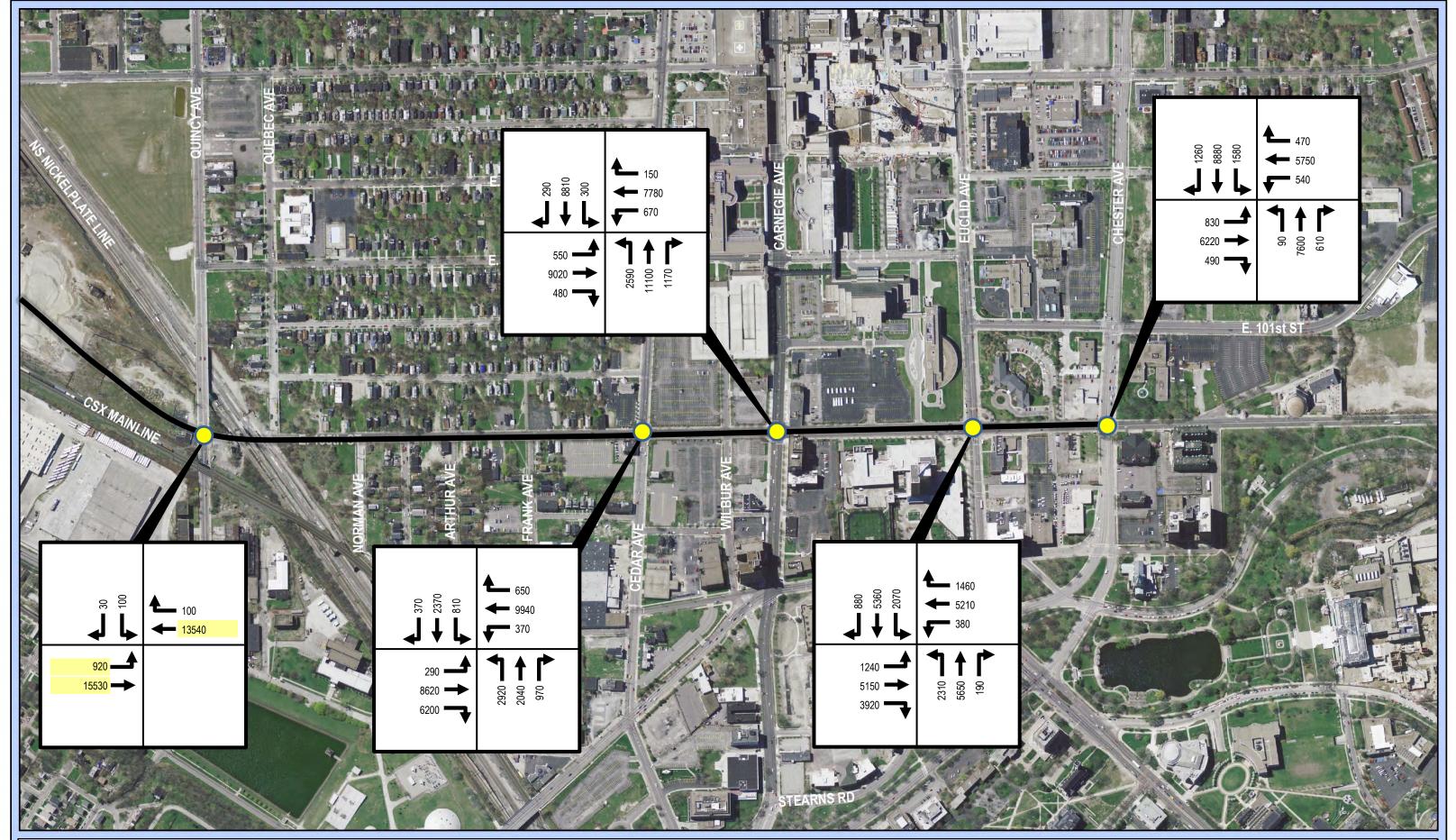
Opening Day/Design Year 2020
Build Network (Central Section) – Closure of East Leg at Quincy and Boulevard
AM (PM) Peak Hour Traffic



Opening Day/Design Year 2020

Build Network (East Section) – Closure of East Leg at Quincy and Boulevard


AM (PM) Peak Hour Traffic



Opening Day/Design Year 2020
Build Network (West Section) – Closure of East Leg at Quincy and Boulevard ADT

Opening Day/Design Year 2020
Build Network (Central Section) – Closure of East Leg at Quincy and Boulevard
ADT

Opening Day/Design Year 2020

Build Network (East Section) – Closure of East Leg at Quincy and Boulevard ADT

Appendix C: Traffic Analysis Coordination Meeting Minutes & Correspondence

Opportunity Corridor

From: Valerie Webb

Sent: Friday, February 17, 2012 9:43 AM

To: Opportunity Corridor

Subject: FW: Clarification: Opportunity Corridor Step 7 Lane Use Revisions - Update

From: Matt Wahl

Sent: Friday, February 17, 2012 9:40 AM **To:** 'Cross, Andrew'; Boyer, Thomas

Cc: Dale.Schiavoni@dot.state.oh.us; Valerie Webb; Sarah Brown; Jodi Heflin; Adin McCann **Subject:** RE: Clarification: Opportunity Corridor Step 7 Lane Use Revisions - Update

Thanks Andy. We are wrapping up the plan layouts of the roadways and hope to send out a PDF within a week. We are currently running AutoTurn templates across the corridor intersections to ensure that we have appropriate curb return radii utilized.

Look for something next week.

Thanks,

Matt

From: Cross, Andrew [mailto:ACross@city.cleveland.oh.us]

Sent: Friday, February 17, 2012 9:36 AM

To: Matt Wahl; Boyer, Thomas **Cc:** <u>Dale.Schiavoni@dot.state.oh.us</u>

Subject: RE: Clarification: Opportunity Corridor Step 7 Lane Use Revisions - Update

Matt:

Thank you for the very quick and detailed update. I have only a few minor comments shown below in red. I apologize for the delayed reply.

Andrew R. Cross, P.E., PTOE

Traffic Engineer

City of Cleveland

Division of Traffic Engineering 601 Lakeside Avenue, Room 25

Cleveland, OH 44114 Phone: (216) 664-3197 Fax: (216) 664-3167

Email: across@city.cleveland.oh.us

From: Matt Wahl [mailto:MWAHL@HNTB.com]
Sent: Wednesday, February 08, 2012 8:14 AM

To: Boyer, Thomas **Cc:** Cross, Andrew

Subject: RE: Clarification: Opportunity Corridor Step 7 Lane Use Revisions - Update

Tom,

Sorry for the confusion – we are recommending maintaining two lanes in each direction plus the left turn lane. Each left turn lane length will be shortened - northbound to avoid the church on the south (west) side of Kinsman. The southbound turn lane will be very short to limit the widening to the southern of the two RTA bridges – according to NOACA's model no one would make this turning movement – which generally makes sense since you would stay on Woodland to access points east if coming from the north. We figured it best to leave a minimal length of turn lane in case someone does make the turn rather than restricting the movement altogether – since we will already need to offset the thru lanes for the NB left lane.

Let me know if this helps. In the near future we will have updated plan layouts to illustrate this narrative – just not ready yet.

Thanks,

Matt

From: Boyer, Thomas [mailto:tboyer@city.cleveland.oh.us]

Sent: Wednesday, February 08, 2012 7:53 AM

To: Matt Wahl Cc: Cross, Andrew

Subject: Clarification: Opportunity Corridor Step 7 Lane Use Revisions - Update

Matt,

o Kinsman Road/OC Blvd – we found that maintaining the two thru lanes in each direction on Kinsman with a single left turn lane provides improved signal operation. If we limit the length of the turn lanes and shift the widening slightly further to the west side we should be able to avoid impacts to the church and the residential units. We will need to widen a bridge over RTA. We recommend maintain the two thru lane configuration along Kinsman Road.

Clarification: the two thru lanes with a single left turn lane improves signal operation but since the thru lane requires the RTA bridge to be widened this left turn lane will not be recommended. Is this interpretation correct?

Thomas P. Boyer, P.E. Design Section Chief Div. Engineering & Construction 601 Lakeside Room 518 Cleveland, Ohio 44114 216.664.2379

From: Matt Wahl mailto:MWAHL@HNTB.com
Sent: Tuesday, February 07, 2012 7:26 PM

To: Cross, Andrew; Boyer, Thomas; David Short; John Motl; Dale.Schiavoni@dot.state.oh.us

Cc: Valerie Webb; Sarah Brown; Joshua Epperson; Matthew Regan **Subject:** Opportunity Corridor Step 7 Lane Use Revisions - Update

Andy and Tom,

Since our meeting at city hall last month we have performed a lot of coordination, refined the capacity analysis and been evaluating the impacts affiliated with potential lane use revisions along the corridor. I wanted to provide you with a semi-brief summary of activities and their results:

 Geometrics/Traffic Analysis coordination meeting with ODOT Central Office – we met with Roadway Services staff. Part of the discussion was about the analysis methods and goals for the traffic modeling. It was determined that we will utilize both our Synchro model for the corridor operations, but also look at each signalized intersection using HCS. Volume to Capacity ratios under 0.9 are the desire for all of the movements, but will not be a specific requirement – like discussed at the city meeting we will examine what it takes to keep the V/C's around or under 0.9, but recognize that the impacts may exceed the benefits. Also discussed at the meeting was the need to maintain a 60mph design speed along I-490 up to the new intersection with the quadrant roadway. Based on this we are in the process of reevaluating our alignment and typical section elements between E55th Street and the Kingsbury Run valley.

- Improvements to V/C's at specific locations at the meeting with you at city hall specific intersections were to be further studied to see what it would take to lower the V/C ratio's. Below is a summary of this work and the affiliated impacts.
 - o Kinsman Road/OC Blvd we found that maintaining the two thru lanes in each direction on Kinsman with a single left turn lane provides improved signal operation. If we limit the length of the turn lanes and shift the widening slightly further to the west side we should be able to avoid impacts to the church and the residential units. We will need to widen a bridge over RTA. We recommend maintain the two thru lane configuration along Kinsman Road.
 - E79th/OC Blvd within HCS we were able to improve the traffic operation at this location without additional lanes from what was shown at the meeting. This does include an EB right turn lane onto F79th.
 - Buckeye/OC Blvd within HCS we were able to improve the traffic operation at this location without additional lanes from what was shown at the meeting. This does include an EB right turn lane onto Buckeye.
 - O Woodland/OC Blvd it was requested that we study adding an EB right turn lane onto Woodland from the boulevard –Within HCS we can get this intersection to operate with V/C's under 0.9. Adding the turn lane did very little to improve operations, and would increase pedestrian crossing distances – an undesirable condition due to the intersection skew and proximity to the recreation center. Based on the above we do not recommend adding the turn lane.
 - E93rd/OC Blvd per the discussions at the meeting we added a SB right turn lane from E93rd to the boulevard. This lane will be short in length to avoid impacts/widening to the E93rd Street bridge over NS and RTA.
 - Quincy/E105th within HCS we were able to get acceptable V/C's using dedicated lefts and shared thru/right lanes on Quincy – this can be accomplished within the existing pavement widths – we have not performed profile analysis yet to determine if we can make things fit vertically however – this defers "atomic option 1" of disconnecting the east leg as a future decision.
 - E105th Corridor from the NB Cedar Approach to Euclid we were asked to study adding either right turn lanes in the NB direction to each intersection or to add a third NB lane that would accommodate thru and right turn movements. The concern was whether the model was accurately estimating the traffic volumes coming from the heights. The desire was to lower some of the V/C's at these locations while also providing extra capacity in case the volumes were low. In conjunction with this analysis we added 5 seconds of "all red time" to the Euclid signal to replicate the bus only jump phase. – in general we found more benefit to adding the third northbound thru/right turn lanes in comparison to individual right turn only lanes. V/C's and approach delays were reduced. At Carnegie we would still have V/C's of 0.92 for the EB T/R movement in the PM. Euclid still has high delays and a failing NB left movement however other improvements were realized by adding the lane. Upon completing this analysis we looked to see if the lane could be added without impacting additional buildings along the corridor. We determined that it appears feasible to snake the widened pavement between the existing buildings. Overall we feel that the third NB lane will improve traffic operations along the corridor without greatly increasing impacts. We do have some concerns with pedestrian mobility across the widened roadway (6 lanes versus 5 lanes). I'm sure we will get many different opinions to this regard. Since the 6 lane section would give us the maximum environmental footprint we are going to proceed with this arrangement at this time. If the city ultimately decides to retain the 5 lane section it would lessen the impacts.

Matt – you are correct that the additional lane increases the intersection width. There is a balancing act of trying to provide adequate capacity while minimizing the roadway cross-section. I believe you have been very thorough in your capacity analysis to this point. You can demonstrate that the x-section has been minimized. I remember that an early proposal called for a seven lane roadway for about half the length of the corridor and a five/six lane section elsewhere. You've reduced much of the roadway to five lanes and added turn lanes only where shown necessary.

I've always been concerned that this roadway would be so popular it would be at capacity on opening day. And I've pushed for more capacity to avoid this problem. The E. 105th St. corridor has always been a big worry for us between Cedar and Chester. You've taken a detailed look at our concerns, and I'm appreciative of that. Adding one lane may be a net "wash" in terms of the pedestrian crossing experience anyway. Inadequate capacity would force us to extend cycle lengths to clear the queues – and that would likely increase the time pedestrians would have to wait for a walk indication.

 Chester/E105th – in both Synchro and HCS were are able to get this intersection to achieve acceptable V/C's and LOS utilizing a 6-lane segment while converting the inside WB thru lane into a left hand turn lane.

After you have had a chance to digest all of this information, let me know if you see anything that concerns you. We are on a very aggressive schedule so I wanted to get the results of our recent efforts in from of you without needing to wait for the plan work to catch up. Feel free to call me with any questions. Once plans are ready we will schedule a meeting to discuss.

Thanks,

Matt

Matthew J. Wahl, P.E.

HNTB Ohio, Inc. 1100 Superior Avenue, Suite 1330 Cleveland, Ohio 44114 Direct: 216.377.5842 Office: 216.522.1140

Cell: 216.375.8556 Fax: 216.522.0554 mwahl@hntb.com Engineers Architects Planners

1100 Superior Avenue Suite 1330 Cleveland, OH 44114 Telephone (216) 522-1140 Facsimile (216) 522-0554 www.hntb.com

Proiect Name

CUY – Opportunity Corridor (PID 77333)

HNTB Project #

39853

Purpose of Meeting IR 490 Terminus at E55th St

Geometrics, IMS discussion

Date of Meeting January 30, 2012

Location

ODOT Central Office
ODOT District 12 via conference call

Time

10:30 am - 11:30 am

ParticipantsSee Attached

MEETING MINUTES

- Introductions
 - Attendees in Columbus and Cleveland introduced themselves.
- Overview of Recommended Preferred Alternative near I-490
 - Matt Wahl of HNTB provided an overview of the preferred alternative for the project. The
 new boulevard will be posted at 35 mph and designed at 40 mph. IR 490 has a 60 mph design
 speed.
 - The primary purpose of the meeting is to determine how far to extend the limited access right of way from IR 490, identify where to transition from a 60 mph to a 40 mph design speed, discuss MOT options, and identify Interchange Modification Study (IMS) requirements.
- Interstate Boulevard Transition of Functional Classification and Speed
 - The limited access right of way (L/A-R/W) is typically extended to the first intersection after the freeway ends. For this project, it should be extended to the first new intersection the quadrant roadway to preclude driveways, etc.
 - The 60 mph design speed should be carried all the way to the first intersection. There is not sufficient distance to transition to lower speeds within the interchange area. The transition to the lower design speed should occur after the intersection and can be achieved with the help of the median, curbs, landscaping, and other elements.
 - Full shoulder widths should be run all the way to the first intersection. Shoulders can be reduced for the turn lanes, per the L&D.
 - Curbs should be avoided on the west approach to the quadrant roadway intersection.
 - Deceleration and taper lengths should be based on a 60 mph design speed.

The horizontal curve under E. 55th should be based on a 60 mph design speed. It may be difficult to meet the 60 mph requirement for both curvature and superelevation. This location could be a candidate for a design exception given it's proximity to the lower-speed quadrant roadway intersection.

MOT Requirements for I-490

- HNTB inquired whether it would be acceptable to detour IR 490 traffic onto local streets during construction. Possible detour routes were discussed.
- Issues related to MOT and constructability are usually at the discretion of the local ODOT
 District. District 12 would accept shutting down the IR 490 leg during construction, as there
 do not appear to be any other options.
- A temporary runaround on E55th Street to the east could allow E55th Street to be maintained during construction of the bridge.
- Another option discussed included construction of the boulevard east of E55th, then using the boulevard to detour E55th to Kinsman which reconnects back to E55th at Woodland. However, consideration should be given to the construction phasing, as this could require the railroad bridge to built first, before starting E. 55th, and could extend the construction timeline substantially.

Traffic Analysis Requirements

- Matt Wahl provided an overview of updates to the traffic model to include projected development traffic. Following completion of the modeling efforts HNTB updated the Synchro model. This was presented to the city of Cleveland's engineering and traffic departments. Their traffic group expressed a desire to maintain volume-to-capacity (v/c) ratios at or below 0.9, however they wanted to see the impacts associated with doing this.
- As a rule of thumb, the intersections in the project area should be designed so that no v/c ratio of 0.9 to account for variance in traffic distribution. However, ODOT may consider higher v/c ratios depending on the costs and impacts.
- ODOT Central Office staff will not require an IMS for this project since we are essentially maintaining the same number of lanes on I-490, just constructing them at a lower elevation.
- HNTB should provide a memorandum with an operational analysis of the entire corridor, beginning at the IR 77 ramps to/from IR 490.
- The operational analysis should include a Synchro run for the entire corridor with the timings optimized for progression along the boulevard.
- The Synchro files should also be converted to Highway Capacity Software (HCS). For the HCS analyses, the timings should be adjusted to balance the approach delays. This could result in different levels of service and/or lane use requirements.
- Costs, impacts, and operations will need to be weighed in determining the final lane use.

- The current preferred alternative corrects the inside merge condition from the IR 77 NB/SB ramps to IR 490 EB. HNTB should consider an add lane at this location that would become the EB right turn lane at the quadrant roadway intersection. HNTB should also check the capacity of the individual merges on the ramp as it transitions to a single lane.
- ODOT Central Office is going to contact FHWA to confirm that an IMS is not needed.

Opportunity Corridor

Geometrics/IMS Coordination Meeting Monday, January 30, 2012

Name	Representing	email address	Phone No.
1. Larry Hoffman	ODOT Central Office	larry.hoffman@dot.state.oh.us	614-466-6439
2. Tim Hill	ODOT Central Office	tim.hill@dot.state.oh.us	614-644-0377
3. Dirk Gross	ODOT Central Office	dirk.gross@dot.state.oh.us	614-752-5576
4. Matt Wahl	HNTB	mwahl@hntb.com	216-522-1140
5. Jodi Heflin	НМТВ	jheflin@hntb.com	216-633-2638
6. Katie Zehnder	НМТВ	kzehnder@hntb.com	614-228-1007
7. Josh Epperson	НПТВ	jepperson@hntb.com	614-228-1007
8. Mark Carpenter	ODOT District 12	mark.carpenter@dot.state.oh.us	216-584-2089
9. John Motl	ODOT District 12	john.motl@dot.state.oh.us	216-584-2085
10. Dale Schiavoni	ODOT District 12	dale.schiavoni@dot.state.oh.us	216-584-2080
11. Dave Short	ODOT District 12	dave.short@state.oh.us	216-584-2139
12. Sarah Brown	HNTB	sebrown@hntb.com	216-377-5831
13. Matt Regan	НПТВ	mregan@hntb.com	216-377-5826

Meeting Notes

Date: January 26, 2012

Time: 1:00 p.m. – 2:30 p.m.

Location: City Hall, Room 501

Attendees: Andrew Cross, City of Cleveland Traffic

Thomas Boyer, City of Cleveland Engineering and Construction

Dale Schiavoni, ODOT District 12 John Motl, ODOT District 12 David Short, ODOT District 12 Matt Wahl, HNTB Corporation Valerie Webb, HNTB Corporation

Re: CUY-Opportunity Corridor PID 77333 – Lane Use

Project Information

- The purpose of this meeting was to coordinate with the City of Cleveland regarding lane requirements and lane reconfigurations for intersecting local streets along the boulevard.
- HNTB has updated NOACA's travel demand model to develop turning movement volumes along the
 corridor using a 2020 design year. Synchro screen captures showing current proposed lane configurations
 and v/c ratios for AM and PM peak periods were provided, as well as traffic plates showing 2020 AM and
 PM peak hour volumes along the corridor. Limited copies of the preliminary HCS results were also on hand.
 Each intersection was discussed individually. Specific discussion points by intersection are listed below.

Lane Configuration Discussion

- Kinsman Road Presented as a 4-lane road with 2 left turn lanes and a thru/right lane in the northwest direction and 1 left turn lane with a thru/right in the southeast direction. Synchro results showed v/c ratios over 1.0 EB in the HCS analysis. The City requested looking further in the HCS results to see what could be done to get all movements with v/c's under 0.90. The possibility of keeping 2 thru lanes in each direction and making Kinsman a standard 5-lane section was also discussed. From preliminary horizontal alignment investigations, this lane configuration would result in additional impacts. However, the City expressed a desire to have a 5-lane section on Kinsman if at all possible and asked that further investigation be done to see how the traffic on a 5-lane section operates and if there is a way to fit it in geometrically and avoid additional impacts.
- E. 79th Street Preliminary HCS results showed v/c's over 0.90 in the EB direction. The City requested that HNTB determine how much the delay on the Boulevard and E. 79th would have to be unbalanced in order to have v/c's under 0.90 for all movements.
- Woodland Avenue Presented as a 5-lane section on both the Boulevard and Woodland Avenue. The City requested analyzing adding an EB right turn lane on the Boulevard to help lower v/c's.
- E. 93rd Street The City suggested adding a SB right turn lane at this intersection. Matt Wahl said we could comply but it would probably be best to keep it to a minimal length (~100') to avoid impacts to the new bridge over the railroad tracks to the north.

- Quincy Avenue With the updated traffic volumes, Synchro analysis shows that, to avoid failing movements and high v/c ratios, the lane configuration needs to be changed from the previously proposed left and thru/right lane to a right and a thru/left lane. However, the geometry with this option is challenging due to three surrounding bridges on Quincy Avenue and E. 105th Street. The left and thru/right geometry has a much better change of fitting and avoiding impacts and interactions with the bridges. To make operations work with that geometry, two options were brought up by HNTB. The first is to close the east leg of this intersection completely, with full access to the area provided by the Woodhill roundabout. The City stated that they would like to avoid this option if at all possible. The second suggestion by HNTB was to restrict the SB left turns onto Quincy. This allows the intersection to operate acceptably with the preferred left and thru/right lane geometry. The City also did not favor this option but said that it was a better choice than completely closing the leg. They asked for additional HCS analysis to be done in this area to determine if there are other options.
- Cedar Avenue With the Step 5 traffic volumes, a NB right turn lane was added at this intersection. However, the new Step 7 traffic shows that this lane is not necessary. The City expressed a desire to leave this lane there to allow for future growth in the area. The City also suggested that they suspect NB right turns will be more evenly distributed between Cedar and Carnegie than the model is showing.
- Carnegie Avenue This intersection has the worst operating conditions in Synchro due to high volumes both NB and WB in the AM Peak Period. According to the analysis, the only option to lower v/c ratios is to add a thru lane onto E.105th Street. The City would like to have as many lanes as possible in this area to improve current and proposed operating conditions; they suggested looking into adding the NB right turn lane at Cedar as a thru/right lane and continuing that lane until Euclid Avenue to provide much capacity in this congested area. HNTB said they could look into how that would fit geometrically and if it would cause additional impacts.
- Euclid Avenue The City suggested adding 5 seconds of all-red time to the E-W approach to more accurately
 portray the bus-only phase that occurs along Euclid Corridor.
- Chester Avenue To achieve efficient operations, HNTB proposed reconfiguring the current 6-lane section on Chester. To do so, a thru lane would be eliminated in each direction and replaced by a right turn only and a left turn only lane in the EB direction and a left turn only lane WB. The City would prefer not to reconfigure this intersection and take away a thru lane but they were not opposed to it if that's what it takes to make the intersection operate efficiently, recognizing that adding an additional left turn lane on Chester would be difficult due to the existing geometry of Chester, substandard lane widths and presence of historic property.

Summary

Across the whole corridor, the City would like HNTB to look into what it would take to get all movements to have v/c ratio of less than 0.90. They realize that this will unbalance the approach delays and, in most cases, favor the boulevard over the side streets. Once the additional analysis is complete, they will review and give their final comments on the proposed lane configurations. HNTB said they would provide the updated HCS results to the City and ODOT within two weeks (i.e. on or before February 9th, 2012).

Appendix D: HCS Analysis Results - Signalized Intersections (2020 AM Peak Hour)

Analyst: TVF Inter.: E. 55th St & Quadrant Agency: HNTB Area Type: All other areas Jurisd:

Date: 04/16/2012

Period: AM Peak Hour Year : 2020

Project ID: Recommended Preferred Alternative AM Peak Period (I-01)

	drant						h Stre			
				D INTERS					. 1 1	
	Easth	!		bound	- 1	thbou			ıthbou	:
	L I	. R	L	T R	L	Т	R	L	T	R
No. Lanes		I 0 0 I	1	0 1			0	1	2	0
LGConfig		0 0 1	L	O I		TR	0	L	Z T	0
Volume		ļ	260	200		1030	320	120	250	
Lane Width			11.0	11.0		11.0	Į.		11.0	
RTOR Vol		į		0			0			i
Duration	0.25	Area T		ll other al Opera						
Phase Combi	nation 1	_ 2	3	4		5	6	7	8	
EB Left				NB						
Thru				ļ	Thru		A			
Right				ļ	Right		A			
Peds					Peds	_	X			
WB Left	A	7		SB			A			
Thru	_				Thru	A	A			
Right	A	7			Right					
Peds					Peds					
NB Right				EB	_					
SB Right	2.0			WB	Right		C1 2			
Green Yellow	3.	5.5				7.2 3.5	61.3 3.5			
All Red	3. 1.					1.5	1.5			
AII KEU	Τ.	5					le Len	ath:	120 0	secs
		Intersec	ction P	erforman	ce Summ			9 011 -	120.0	DCC.
Appr/ Lan	e	 Adj Sat		ios		_	App:	roach	 1	
Lane Gro	_	low Rate								
	acity				D - 1			- T O C		
	acicy	(s)	V / C	g/C	Delay	LOS	Dela	y LOS	•	
Grp Cap 		(S) 	V/C 	g/C 	Delay 	LOS	Dela	y LOS		
Grp Cap Eastbound Westbound							Dela	y LOS		
Grp Cap Eastbound		(s) 	0.54		Delay	D				
Grp CapEastbound Westbound L 52	0						Dela;			
Grp Cap Castbound Vestbound C 52	0	1711	0.54	0.30	35.8	D				
Grp Cap Grap Gra	0	1711 1531	0.54	0.30	35.8	D C	31.1	C		
Grp Cap Gastbound Westbound 52 C 62 Northbound	0	1711	0.54	0.30	35.8	D		C		
Grp Cap ————————————————————————————————————	0	1711 1531	0.54	0.30	35.8	D C	31.1	C		
Grp Cap Grp Cap Eastbound Westbound 52 R 62 Northbound TR 16 Southbound	0 1 89	1711 1531	0.54	0.30 0.41 0.51	35.8	D C	31.1	C		
Grp Cap Eastbound Westbound L 52 R 62 Northbound IR 16 Southbound L 16	0 1 89	1711 1531 3307	0.54 0.35 0.87	0.30 0.41 0.51	35.8 25.0 31.0	D C C	31.1	C		

Inter.: Quadrant & Boulevard Analyst: TVF Agency: HNTB Area Type: All other areas Jurisd:

Date: 04/16/2012

Period: AM Peak Hour Year : 2020

Project ID: Recommended Preferred Alternative AM Peak Period (I-02)

E/W St: Boulevard N/S St: Quadrant

			SI	GNALI	ZED IN	TERS	ECTION	SUMM	ARY			
	Eas	stbou	nd	Wes	stbour	ıd	Nor	thbo	und	Sou	thbo	und
	L	Т	R	L	Т	R	L	Т	R	L	Т	R
No. Lanes		3	0	1	2	0	_ 2	0	 1		0	0
LGConfig	İ	TR		L	T		L		R	İ		
Volume	İ	1800	260	200	1300		220		220	İ		
Lane Width	İ	11.0		11.0	11.0		11.0		11.0	İ		
RTOR Vol	İ		0	ĺ			ĺ		0	İ		

Dur	ation	0.25	I	Area I		All o							
	ee Comb	ination 1		2	s_s	911a⊥ O. 4	perac 	TOIIS	 5	 6	 7	 8	
EB	Left	IIIacion i		2	J	-	NB	Left	A	O	,	O	
	Thru	P					İ	Thru					
	Right	P					İ	Right	A				
	Peds	X					İ	Peds					
WB	Left	P		A			SB	Left					
	Thru	P		P			ĺ	Thru					
	Right						İ	Right					
	Peds						İ	Peds					
NB	Right			A			EB	Right					
SB	Right						WB	Right					
Gre	en	62	. 7	11.3					31.0				
Yel	low	3.	5	3.5					3.5				
All	Red	1.	5	1.5					1.5				

			Cycle Length: 120.0								
		Intersec	tion Pe	erforman	ce Summa	ary					
Appr/ Lane	Lane Group	Adj Sat Flow Rate	e		Lane (Group	Appro	oach			
Grp	Capacity	(s)	v/c	g/C	Delay	LOS	Delay	LOS			
Eastbo	und										
TR	2514	4812	0.89	0.52	30.9	С	30.9	С			
Westbo	und										
L	292	1711	0.74	0.66	52.8	D					
Т	2257	3428	0.63	0.66	12.9	В	18.2	В			
Northbo	ound										
L	858	3322	0.28	0.26	35.7	D	21 0				
R Southbo	603 ound	1531	0.40	0.39	26.4	С	31.0	С			

Intersection Delay = 26.2 (sec/veh) Intersection LOS = C

	HCS 2010					nters	ection	n Res	sults S	umm	ary	I-0	3 AM P	eak Hou	r
								N.							
General Inform	nation	1						\rightarrow	Intersec		v	on	_	1 1 7 2 1	ba lu
Agency		HNTB							Duration,		0.25			• • •	
Analyst		TVF				e Apr 18		_	Area Typ	е	Othe	<u> </u>	^_ →		
Jurisdiction				Time F			eak Hou		PHF		0.92			₩ ‡ E 8	← <u>&</u> ←
Intersection		Kinsman Rd		Analys	is Yea	r 2020			Analysis	Period	1> 7:	00	 		* ✓
File Name														5 † †	
Project Descrip	tion	AM Peak - 3 EB thr	u lanes	(I-03)									1	4 1 4 7	P 7
Demand Inform	nation				EB			WE	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), ve	h/h			10	1840	170	10	123	0 10	250	300	10	10	120	20
Ciam al Informa	4!			1			111:	-		-					
Signal Informa		Reference Phase			.,	Ħ							,	ζ ,	本
Cycle, s	120.0		2	-	戌.	1 50	ଆ "ୁୀ	2				1	\rightarrow 2	3	4
Offset, s	0	Reference Point	End	Green		11.5	36.6	0.0		0.0			<u> </u>		
Uncoordinated	No	Simult. Gap E/W	On	Yellow	-	3.5	3.5	0.0	0.0	0.0			Z	_	Ψ
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	0.0	1.5	0.0	0.0	0.0	-	5	6	7	8
Timer Results				EBI	_	EBT	WB	L	WBT	NBI	_	NBT	SBI		SBT
Assigned Phase	e					2		\neg	6	3	\neg	8		\neg	4
Case Number						6.0			6.0	1.0		4.0			6.3
Phase Duration	nase Duration, s					63.4			63.4	15.0)	56.6			41.6
Change Period,	ange Period, (Y+Rc), s					5.0			5.0	3.5		5.0			5.0
Max Allow Head	ax Allow Headway <i>(MAH)</i> , s					0.0			0.0	2.8		3.1			3.1
Queue Clearan	ueue Clearance Time (gs), s									13.5	5	8.9			5.7
Green Extensio	geue Clearance Time (g_s) , s een Extension Time (g_e) , s					0.0			0.0	0.0		0.9			0.9
Phase Call Prol	bability									1.00		1.00			1.00
Max Out Proba	bility									1.00)	0.00			0.00
Movement Gro	un Pos	eulte			EB			WB			NB			SB	
Approach Move		buits		L	T	R		T	R	L	T	R	L	T	R
Assigned Move				5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow F		yoh/h		11	1473		11	675	673	272	169	168	11	77	76
		ow Rate (s), veh/h/ln		403	1863		179	1863	_	1774	1863	1841	1039	1863	1771
Queue Service				2.7	40.3	41.0	6.6	35.0		11.5	6.8	6.9	0.9	3.6	3.7
Cycle Queue C		·		37.7	40.3	41.0	47.7	35.0	_	11.5	6.8	6.9	0.9	3.6	3.7
Capacity (c), ve		(0) /		139	1813		86	907	904	567	801	792	377	568	540
Volume-to-Capa	acity Ra	itio (X)		0.078	0.813	0.822	0.127	0.744	0.745	0.479	0.211	0.212	0.029	0.135	0.140
Available Capa	city (ca)	, veh/h		139	1813	866	86	907	904	567	801	792	377	568	540
Back of Queue	(Q), vel	n/In (50th percentile)		0.3	17.6	17.6	0.4	16.1	16.1	5.3	3.0	2.9	0.2	1.6	1.6
Overflow Queue	e (Q3), \	/eh/ln		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		RQ) (50th percentile)	0.01	0.45	0.45	0.02	0.56	0.56	0.33	0.19	0.19	0.02	0.12	0.12
Uniform Delay	(d1), s/v	eh		40.0	26.2	26.3	46.7	24.8	24.8	24.6	21.4	21.5	29.3	30.2	30.3
Incremental De	ncremental Delay (d2), s/veh			0.5	1.9	4.1	2.7	4.9	5.0	0.2	0.0	0.0	0.0	0.0	0.0
Initial Queue De	nitial Queue Delay (d3), s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (ontrol Delay (d), s/veh			40.5	28.0	30.4	49.4	29.7	29.8	24.9	21.5	21.5	29.3	30.3	30.3
	evel of Service (LOS)			D	С	С	D	С	С	С	С	С	С	С	С
	oproach Delay, s/veh / LOS			28.9)	С	29.9	9	С	23.0)	С	30.2	2	С
Intersection De	tersection Delay, s/veh / LOS					28	3.4						С		
Multimodal Po	ultimodal Results			EB			WB			NB			SB		
	edestrian LOS Score / LOS			2.8		С	2.8		С	3.2		С	3.0		С
Bicycle LOS So				1.7		A	1.6		A	1.0	_	A	0.6		A
2.5,5.5 200 00	3. 3 , LC	-		1.7			1.0		. ,	1.0			0.0		

		HCS 2	010 S	ignali	zed Ir	nterse	ection	Re	sults	Summ	ary		I-04 AM	l Peak	Hour
General Inforn	nation								Interse	ction Inf	ormatic	on	2	9201	
Agency		HNTB						\neg	Duratio		0.25			41	
Analyst		TVF		Analys	is Date	Apr 18	3. 2012	\neg	Area Ty		Othe	r	Z _3		
Jurisdiction		Ì		Time F			eak Hou	r	PHF		0.92			₩ŤE	-
Intersection		E. 75th Street			is Year					s Period	1> 7:	00			*
File Name														5 \$	
Project Descrip	otion	AM Peak (3 EB thru	ı lanes)	(I-04)										* FEY	EY
Demand Inform	mation				EB		7	W	В	7	NB		1	SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), ve	eh/h			40	1810	10	10	12	30 10	10	40	20	10	10	20
Signal Informa	ation						T	Т	T	T			0.0		
Cycle, s	120.0	Reference Phase	2	1	□ 3 ≥	542	7						4		4
Offset, s	0	Reference Point	End	Green	64.5	45.5	0.0	0.0	0.0	0.0		1	2	3	
Uncoordinated	No	Simult. Gap E/W	On	Yellow		3.5	0.0	0.0				18	→		K1
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	1.5	0.0	0.0	0.0	0.0		5	6	7	
Timer Results				EBI	_	EBT	WBI		WBT	NB	L	NBT	SBI		SBT
Assigned Phas	e					2		\neg	6			8		\neg	4
Case Number						6.0			6.0			6.0			6.0
Phase Duration	າ, s				- 6	69.5		\neg	69.5			50.5		\neg	50.5
Change Period	l, (Y+Rc)), s				5.0			5.0			5.0			5.0
Max Allow Hea	dway (/\	<i>ЛАН)</i> , s				0.0		\neg	0.0			3.2			3.2
Queue Clearan	ce Time	e <i>(g_s),</i> s										4.9			5.5
Green Extension	on Time	<i>(g_e),</i> s				0.0			0.0			0.2			0.2
Phase Call Pro	hase Call Probability											1.00			1.00
Max Out Proba	ax Out Probability											0.00			0.00
Movement Gro	rement Group Results				EB			WE	3		NB			SB	
Approach Move	oach Movement				Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ement			5	2	12	1	6	16	3	8	18	7	4	14

Movement Group Results		EB			WB			NB			SB	
Approach Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Movement	5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow Rate (v), veh/h	43	1320	658	11	675	673	11	65		11	33	
Adjusted Saturation Flow Rate (s), veh/h/ln	403	1863	1857	219	1863	1857	1371	1757		1331	1663	
Queue Service Time (gs), s	10.5	30.5	30.5	4.5	31.5	31.5	0.6	2.9		0.6	1.5	
Cycle Queue Clearance Time (gc), s	42.1	30.5	30.5	35.0	31.5	31.5	2.1	2.9		3.5	1.5	
Capacity (c), veh/h	171	2002	998	122	1001	998	563	666		533	631	
Volume-to-Capacity Ratio (X)	0.255	0.659	0.659	0.089	0.674	0.674	0.019	0.098		0.020	0.052	
Available Capacity (ca), veh/h	171	2002	998	122	1001	998	563	666		533	631	
Back of Queue (Q), veh/ln (50th percentile)	1.2	13.1	13.5	0.3	14.0	14.0	0.2	1.2		0.2	0.6	
Overflow Queue (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Queue Storage Ratio (RQ) (50th percentile)	0.05	0.33	0.34	0.01	0.49	0.49	0.05	0.31		0.05	0.15	
Uniform Delay (d1), s/veh	35.4	19.9	19.9	32.4	20.1	20.1	24.3	24.0		25.1	23.6	
Incremental Delay (d2), s/veh	3.6	1.7	3.4	1.4	3.6	3.6	0.0	0.0		0.0	0.0	
Initial Queue Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Control Delay (d), s/veh	38.9	21.6	23.3	33.8	23.7	23.8	24.3	24.0		25.2	23.6	
Level of Service (LOS)	D	С	С	С	С	С	С	С		С	С	
Approach Delay, s/veh / LOS	22.5	5	С	23.8	3	С	24.1		С	24.0)	С
Intersection Delay, s/veh / LOS			23	3.1						С		

EΒ

В

Α

2.3

1.6

Multimodal Results

Pedestrian LOS Score / LOS

Bicycle LOS Score / LOS

2.3

1.6

WB

В

Α

2.9

0.6

SB

С

Α

NB

С

Α

3.2

0.6

		HCS 20	010 S	ignali	zed	Inters	ectior	n Res	ults S	umm	ary	I-0	5 AM P	eak Hou	ır
O a manual lunda musad										l	4!			国基本工	N III
General Informat	- Ir	LINTO						\rightarrow	Intersec		v	on	- 1	4,	Da 12
Agency	_	HNTB		A l	:- D-4	- 04	0.0040		Duration		0.25				R.
Analyst		TVF		-		e Apr 18		_	Area Typ	<u>e</u>	Other				4 <u>></u>
Jurisdiction		E 701 01 1		Time F			eak Hou	_	PHF	D : 1	0.92	20	- □	W # E	<i>-</i>
Intersection		E. 79th Street		Analys	sis yea	r 2020			Analysis	Perioa	1> 7:0	JU			· ·
File Name		AMAR I OFFI		(1.05)									- 1	ጎተረ	
Project Description	n	AM Peak - 3 EB thr	u lanes	(1-05)										TTYT	P.C
Demand Informat	tion				EB		Т	WE	3		NB			SB	
Approach Moveme	ent			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), veh/h	า			40	1670	140	90	108	0 10	110	330	140	10	110	70
				1											
Signal Informatio	- Ir			-		늴,			23			_		Κ.	人
	20.0	Reference Phase	2		'	´ 🛱 '	' sn	2 5	12		K	ightharpoonup	⇔ ₂	3	4
0001, 0	0	Reference Point	End	Green	8.5	51.7	11.5	31.	3 0.0	0.0		_	Ā	_	
	No	Simult. Gap E/W	On	Yellow	-	3.5	3.5	3.5	0.0	0.0			7		V
Force Mode Fi	ixed	Simult. Gap N/S	On	Red	0.0	1.5	0.0	1.5	0.0	0.0	_	5	6	7	8
Timer Results				EBI		EBT	WB	1	WBT	NBI		NBT	SBI		SBT
Assigned Phase				LDI	-	2	1	_	6	3	-	8	OBI	_	4
Case Number						6.3	1.0		4.0	1.0		3.0			6.3
	ase Duration, s					56.7	12.0		68.7	15.0		51.3		_	36.3
	ase Duration, s ange Period, (Y+Rc), s					5.0	3.5	_	5.0	3.5		5.0		_	5.0
Max Allow Headwa					_	0.0	2.8	_	0.0	2.8	_	3.2		_	3.2
Queue Clearance					_	0.0	5.4		0.0	7.4	_	19.6	_		13.2
Green Extension 7					-	0.0	0.0	_	0.0	0.1		1.4		_	1.4
Phase Call Probab		<u>ye), s</u>			_	0.0	1.00		0.0	1.00)	1.00	-		1.00
Max Out Probabilit					_		0.57	_		0.19		0.00		_	0.00
Wax Out 1 Tobabilit	Ly						0.01			0.10		0.00			0.00
Movement Group	Res	ults			EB			WB			NB			SB	
Approach Moveme	ent			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Moveme	ent			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow Rat	te (v),	veh/h		43	1328	640	98	593	591	120	359	152	11	196	
Adjusted Saturation	n Flo	w Rate (s), veh/h/ln		471	1863	1786	1774	1863	1857	1774	1863	1579	1019	1741	
Queue Service Tin	me <i>(g</i> :	s), s		8.4	37.8	38.1	3.4	26.3	26.3	5.4	17.6	7.0	1.0	11.2	
Cycle Queue Clea	arance	Time (gc), s		22.7	37.8	38.1	3.4	26.3	26.3	5.4	17.6	7.0	3.6	11.2	
Capacity (c), veh/h	h			207	1605	770	211	989	986	428	719	721	304	454	
Volume-to-Capacit	ty Rat	tio (X)		0.210	0.827	0.831	0.464	0.600	0.600	0.280	0.499	0.211	0.036	0.431	
Available Capacity	y (Ca),	veh/h		207	1605	770	211	989	986	428	719	721	304	454	
Back of Queue (Q), veh	/In (50th percentile)		1.1	17.5	18.0	1.4	11.7	11.6	2.3	8.0	2.6	0.3	4.9	
Overflow Queue (Q3), v	eh/ln		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Queue Storage Ra	atio (F	RQ) (50th percentile)	0.05	0.49	0.51	0.06	0.46	0.45	0.13	0.45	0.15	0.02	0.31	
Uniform Delay (d1)), s/ve	eh		31.3	30.2	30.3	25.0	19.4	19.4	26.1	28.0	19.6	35.1	36.9	
Incremental Delay	cremental Delay (d ₂), s/veh					10.2	0.6	2.7	2.7	0.1	0.2	0.1	0.0	0.2	
Initial Queue Dela	tial Queue Delay (d3), s/veh					0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d),	s/veh			33.6	35.2	40.4	25.6	22.1	22.1	26.2	28.2	19.7	35.1	37.2	
Level of Service (L	vel of Service (LOS)				D	D	С	С	С	С	С	В	D	D	
Approach Delay, s	proach Delay, s/veh / LOS)	D	22.3	3	С	25.8	3	С	37.1		D
Intersection Delay	ersection Delay, s/veh / LOS					30).7						С		
	time del Deculto														
Multimodal Resu					EB			WB		0.0	NB	0	2.5	SB	
	estrian LOS Score / LOS				_	В	2.3		В	3.2		C	3.0	_	C
Bicycle LOS Score	e / LO	3		1.6		A	1.5		Α	1.5		Α	0.8		Α

		HCS 20)10 S	ignali	ized I	nters	ection	n Res	ults S	umm	ary	I-0	6 AM P	eak Hou	ır
0										(! l£			1	IdAbl	u T
General Inforn	nation	LINITO						\rightarrow	Intersec		1	on	- 1	411	
Agency		HNTB		1					Duration		0.25				
Analyst		TVF		<u> </u>		May 9		_	Area Typ	е	Other	•			
Jurisdiction				Time F			eak Hou		PHF		0.92			w ∓ E 8	
Intersection		Buckeye Rd			sis Year				Analysis	Period	1> 7:0	00			ti c
File Name		I-06_2012-04-24_R			Peak_Bl	vd-Bucl	keye (3	EB thr	u).xus					5 1 1 1	
Project Descrip	tion	AM Peak - 3 EB thru	ı lanes	(I-06)										14 t 🕈 🕆	P C
Demand Inform	mation				EB			WE	3		NB			SB	
Approach Move	ement			L	T	R	L	Т	R	L	T	R	L	Т	R
Demand (v), ve	h/h			10	1720	80	40	960	10	210	640	270	10	420	10
Signal Informa	ation							7							
Cycle, s	120.0	Reference Phase	2			4	SA2					<u> </u>	7		◮
Offset, s	0	Reference Point	End	1		 		7				1	> 2	3	4
·				Green	_	50.0	48.0	0.0	0.0	0.0		_	<u> </u>		
Uncoordinated		Simult. Gap E/W	On	Yellow	-	3.5	3.5	0.0	0.0	0.0				_	Ψ
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	1.5	1.5	0.0	0.0	0.0	-	5	6	7	8
Timer Results				EBI	L	EBT	WB	L	WBT	NBI	L	NBT	SBI	L	SBT
Assigned Phas	е			5		2	1		6			8			4
Case Number				1.1		4.0	1.1		4.0			6.0			6.0
Phase Duration	n, s			12.0)	55.0	12.0)	55.0			53.0			53.0
Change Period	, (Y+Rc)	, s		5.0		5.0	5.0		5.0			5.0			5.0
Max Allow Head		· · · · · · · · · · · · · · · · · · ·		2.8		0.0	2.8		0.0			3.2			3.2
Queue Clearan				2.4	_		3.6	_				39.5			31.9
Green Extension		<i>(g_e),</i> s		0.0	_	0.0	0.0	_	0.0	_		3.0			3.8
Phase Call Pro				1.00	_		1.00	_		_		1.00			1.00
Max Out Proba	bility			0.01			0.28	3				0.42			0.12
Movement Gro	oup Res	ults			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	T	R	L	T	R	L	T	R
Assigned Move	ment			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow I	Rate (v)	, veh/h		11	1314	643	43	528	526	228	521	468	11	234	233
Adjusted Satura	ation Flo	ow Rate (s), veh/h/ln		1774	1863	1818	1774	1863	1856	922	1863	1674	567	1863	1847
Queue Service				0.4	38.1	38.3	1.6	27.7	27.7	27.1	28.0	28.0	2.0	10.4	10.4
Cycle Queue C		e Time (gc), s		0.4	38.1	38.3	1.6	27.7	27.7	37.5	28.0	28.0	29.9	10.4	10.4
Capacity (c), ve				263	1552	758	185	776	773	349	745	670	155	745	739
Volume-to-Cap	-			0.041	0.846	_	0.235	0.680	_	0.654	0.699	0.699	0.070	0.315	0.315
Available Capa				263	1552	758	185	776	773	349	745	670	155	745	739
		n/ln (50th percentile)		0.2	17.2	17.4	0.6	12.9	12.9	6.3	12.7	11.5	0.3	4.5	4.5
Overflow Queu	. ,			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		RQ) (50th percentile)		0.01	0.47	0.48	0.03	0.49	0.49	0.40	0.81	0.73	0.02	0.26	0.25
	niform Delay (d1), s/veh			19.9	31.5	31.6	24.5	28.5	28.5	37.6	30.0	30.0	42.4	24.7	24.7
	cremental Delay (d2), s/veh			0.0	2.8	5.7	0.2	4.2	4.2	0.0	2.5	2.7	0.1	0.1	0.1
	itial Queue Delay (d3), s/veh			0.0	0.0 34.4	37.2	0.0 24.7	0.0 32.7	0.0 32.7	41.1	0.0 32.5	0.0 32.7	0.0 42.5	0.0 24.8	0.0
	ontrol Delay (d), s/veh evel of Service (LOS)			19.9 B	34.4 C	D D	24.7 C	32.7	32.7	41.1 D	32.5 C	32.7 C	42.5 D	24.8 C	24.8 C
	proach Delay, s/veh / LOS			35.2		D	32.4		С	34.2		С	25.2		С
	ersection Delay, s/ven / LOS			33.2			32.2	<u>' </u>		34.2			C 25.2		
torocodion bo	, 0, 70														
Multimodal Re	sults				EB			WB			NB			SB	

Pedestrian LOS Score / LOS

Bicycle LOS Score / LOS

2.8

С

Α

3.2

1.5

С

Α

2.8

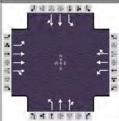
1.6

С

Α

2.9

0.9


С

Α

HCS 2010 Signalized Intersection Results Summary

I-07 AM Peak Hour

General Information				Intersection Info	rmation						
Agency	HNTB			Duration, h	0.25						
Analyst	TVF	Analysis Date	May 9, 2012	Area Type	Other						
Jurisdiction		Time Period	AM Peak Hour	PHF	0.92						
Intersection	Woodland Ave	Analysis Year	2020	Analysis Period	1> 7:00						
File Name	I-07_2012-04-24_RecPrefAlt_AMPeak_Blvd-Woodland (3 EB thru) (balanced).xus										
Project Description	AM Peak - 3 EB thru lanes (I-07)										

File Name	File Name I-07_2012-04-24_RecPr					vd-Woo	dland (3	BEB thr	u) (bala	nced).x	us		7	111	
Project Descrip	tion	AM Peak - 3 EB thr	u lanes	(I-07)									3	* I E T	e n
							_			_			_		
Demand Inform					EB	T D	+ -	WB	T 5	+ -	NB	T 5	+ -	SB	
Approach Move				L	T	R	L	T 770	R	L	T	R	L	T	R
Demand (v), ve	en/n	_	-	10	1820	170	10	770	20	230	190	10	90	190	10
Signal Informa	ation				K		T	T		T				1	
Cycle, s	120.0	Reference Phase	2	1	- P	E.W.SI							4		4
Offset, s	0	Reference Point	End	Croon	60.0	50.0	0.0	0.0	0.0	0.0		1	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Green Yellow		3.5	0.0	0.0	0.0	0.0	-		→		KÍZ
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	1.5	0.0	0.0	0.0	0.0		5	6	7	8
Timer Results				EBI	-	EBT	WB	L	WBT	NBI	_	NBT	SBI	-	SBT
Assigned Phas	е				_	2			6			8			4
Case Number					_	6.0		_	6.0	_	_	6.0	_	_	6.0
Phase Duration		\ <u>-</u>				65.0			65.0			55.0			55.0
Change Period				_	-	5.0		-	5.0	-	-	5.0	_	-	5.0
Max Allow Hea				_		0.0			0.0	_		3.1	_		3.1
	ueue Clearance Time (gs), s reen Extension Time (ge), s				-	0.0		-	0.0	-	-	26.9 1.5	_	-	13.3
	nase Call Probability					0.0			0.0			1.00			1.00
	ax Out Probability				_			_			_	0.00			0.00
Wax Out 1 Toba	ax Out Probability											0.00			0.00
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move				L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move				5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow I				11	1459	704	11	431	427	250	109	108	98	109	108
		ow Rate (s), veh/h/ln		641	1863	1779	183	1863	1846	1159	1863	1830	1159	1863	1830
Queue Service				1.3	38.6	39.3	6.3	18.1	18.1	20.5	4.4	4.4	6.9	4.4	4.4
Cycle Queue C		e Time (gc), s		19.4	38.6	39.3	45.6	18.1	18.1	24.9	4.4	4.4	11.3	4.4	4.4
Capacity (c), ve		atio (V)		0.038	1863 0.783	889	92	931	923	500	776 0.141	762	500	776	762
Volume-to-Cap Available Capa	-			284	1863	0.792 889	0.119 92	931	0.463 923	0.500 500	776	0.142 762	0.195 500	0.141 776	0.142 762
		h/ln (50th percentile)		0.2	16.6	16.4	0.3	8.0	7.9	5.6	1.9	1.9	1.9	1.9	1.9
Overflow Queu				0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		RQ) (50th percentile)	0.01	0.45	0.45	0.01	0.31	0.31	0.38	0.28	0.27	0.24	0.27	0.27
Uniform Delay				25.8	24.7	24.8	43.7	19.5	19.5	29.4	21.7	21.7	25.2	21.7	21.7
Incremental De	` /'			0.1	1.2	2.6	2.3	1.5	1.5	0.3	0.0	0.0	0.0	0.0	0.0
Initial Queue D				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (25.9	25.9	27.4	46.0	21.0	21.0	29.7	21.7	21.7	25.2	21.7	21.7
	evel of Service (LOS)			С	С	С	D	С	С	С	С	С	С	С	С
Approach Dela	pproach Delay, s/veh / LOS			26.4		С	21.3	3	С	26.0)	С	22.8	3	С
Intersection De	ntersection Delay, s/veh / LOS					24	.9						С		
	lultimodal Results			2.8	EB		0.5	WB	_	2.5	NB	_		SB	
	destrian LOS Score / LOS					C	2.8		C	3.2		C	2.9		C
Bicycle LOS So	/cle LOS Score / LOS					Α	1.2		Α	0.9		Α	0.7		Α

		HCS 2	010 S	ignali	zed lı	nterse	ection	Res	sults S	umm	ary		I-08 AN	l Peak F	lour
General Inform	nation								Intersec	tion Inf	ormatio	on	2	4884	K U
Agency		HNTB							Duration		0.25			117	
Analyst		TVF		Analys	is Date	May 1	5, 2012	_	Area Typ		Other				
Jurisdiction				Time F		+	eak Hou	\rightarrow	PHF		0.92			w∮E	=
Intersection		E. 93rd Street		Analys	is Year	2020			Analysis	Period	1> 7:0	00	7		
File Name		I-08_2012-04-24_R	ecPref/	Alt_AMP	eak_Bl	vd-93rd	-SB Rig	ht.xus	3					510	
Project Descrip	tion	Recommended Pre	ferred A	Alternativ	/e AM F	eak (I-0	08)							ares:	2 4
Demand Inform	mation				EB		T	WI	В	7	NB		T	SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), ve				430	1480	10	40	58	0 10	20	410	200	10	230	220
Signal Informa	nal Information					5	يذل ا	T		Т					1
Cycle, s					Ħ.	3 2	50	7					4		T)
Offset, s	0	Reference Point	End	Green	27.5	39.5	39.5	0.0	0.0	0.0		1	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Yellow		3.5	3.5	0.0		0.0		_	→		STZ
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	1.5	1.5	0.0	0.0	0.0		5	6	7	8
Timer Results				EBL	-	EBT	WB	L	WBT	NBI	_	NBT	SBI	_	SBT
Assigned Phas	е			5		2			6			8			4
Case Number				1.0		3.0			6.3			5.0			5.0
Phase Duration	า, ร			31.0) -	75.5			44.5			44.5			44.5
Change Period	, (Y+R c,), s		3.5		5.0			5.0			5.0			5.0
Max Allow Hea	dway <i>(</i> Λ	<i>ЛАН)</i> , s		2.8		0.0			0.0			3.1			3.1
Queue Clearan	ce Time	e (gs), s		20.2	2							27.3			28.6
Green Extension		<i>(g_e),</i> S		0.5		0.0		\perp	0.0			2.2			2.1
Phase Call Pro	bability			1.00)							1.00			1.00
Max Out Proba	bility			0.04								0.08			0.11
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move				5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow I				467	1609	11	43	322		22	446	217	11	250	239
		ow Rate <i>(s)</i> , veh/h/ln		1774	1773	1579	314	1863	3 1851	1125	1863	1579	940	1863	1579
Queue Service	Time (g	gs), S		18.2	41.1	0.3	14.6	16.8	16.8	1.8	25.3	12.9	1.2	12.5	14.4

Movement Group Results		EB			WB			NB			SB	
Approach Movement	L	T	R	L	Т	R	L	Т	R	L	Т	R
Assigned Movement	5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow Rate (v), veh/h	467	1609	11	43	322	320	22	446	217	11	250	239
Adjusted Saturation Flow Rate (s), veh/h/ln	1774	1773	1579	314	1863	1851	1125	1863	1579	940	1863	1579
Queue Service Time (gs), s	18.2	41.1	0.3	14.6	16.8	16.8	1.8	25.3	12.9	1.2	12.5	14.4
Cycle Queue Clearance Time (gc), s	18.2	41.1	0.3	24.7	16.8	16.8	14.3	25.3	12.9	26.6	12.5	14.4
Capacity (c), veh/h	615	2084	927	137	613	609	313	613	520	171	613	520
Volume-to-Capacity Ratio (X)	0.760	0.772	0.012	0.318	0.524	0.525	0.069	0.727	0.418	0.064	0.408	0.460
Available Capacity (ca), veh/h	615	2084	927	137	613	609	313	613	520	171	613	520
Back of Queue (Q), veh/ln (50th percentile)	7.4	16.0	0.1	1.3	8.0	8.0	0.5	12.2	5.0	0.3	5.7	5.6
Overflow Queue (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Queue Storage Ratio (RQ) (50th percentile)	0.31	0.56	0.00	0.12	0.41	0.40	0.03	0.82	0.34	0.01	0.21	1.42
Uniform Delay (d1), s/veh	18.3	18.7	10.3	39.7	32.6	32.6	36.7	35.5	31.3	47.2	31.2	31.8
Incremental Delay (d2), s/veh	2.2	1.3	0.0	5.8	3.1	3.1	0.0	3.8	0.2	0.1	0.2	0.2
Initial Queue Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/veh	20.5	20.0	10.3	45.5	35.7	35.8	36.8	39.3	31.5	47.3	31.3	32.1
Level of Service (LOS)	С	В	В	D	D	D	D	D	С	D	С	С
Approach Delay, s/veh / LOS	20.0)	С	36.4		D	36.7	7	D	32.0)	С
Intersection Delay, s/veh / LOS			27	7.3						С		

EΒ

В

В

2.4

2.2

Multimodal Results

Pedestrian LOS Score / LOS

Bicycle LOS Score / LOS

2.4

1.1

WB

В

Α

3.0

1.3

SB

С

Α

NB

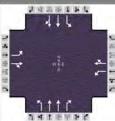
С

Α

2.8

1.6

	HCS 20	10 S	ignali	zed	Interse	ection	Re	sults	s Sı	umma	ary	I-0	9 AM P	eak Hou	r
General Information	1									ion Info	v	n	- 1		<u>b, l,</u>
Agency			ı					Dura			0.25				L
Analyst	TVF		JL		e May 9			Area	Туре)	Other		_		\ & \$ +
Jurisdiction			Time P			eak Hou	r	PHF			0.92		- →	w	♦ ←
Intersection	Quincy Ave				r 2020					Period	1> 7:0	00	*		<u>फ</u>
File Name							and T	hru-R	light.:	xus				<u>ካተተ</u>	
Project Description	Recommended Prefe	rred A	Iternativ	e AM	Peak (I-0	09)								14147	ጎተ
Demand Information				EB			W	′B			NB			SB	
Approach Movement			L	Т	R	L	T	г	R	L	Т	R	L	Т	R
Demand (v), veh/h			10		10					130	1550			610	10
	Defense Dhana				1								KÎ .		7
		2		L 51	` <u>5</u> †	-3						1	2	3	- 4
		End	Green			41.0	0.0) (0.0	0.0					
		On	Yellow	-	3.5	3.5	0.0		0.0	0.0	^`		J		
Force Mode Fixed	Simult. Gap N/S	On	Red	0.0	1.5	1.5	0.0) (0.0	0.0		5	6	7	8
Timer Results			EBL		EBT	WBI		WB	Т	NBL		NBT	SB	L	SBT
Assigned Phase					4		\neg			5		2		\neg	6
Case Number					9.0					1.0		4.0			8.3
Phase Duration, s					46.0					14.0		74.0			60.0
Change Period, (Y+Rc), s				5.0					3.5		5.0			5.0
					3.2		\neg			3.1		0.0			0.0
					2.5					6.5					
					0.0		\neg		\neg	0.1		0.0			0.0
Phase Call Probability	10 //				1.00					1.00					
Max Out Probability					0.00					0.38					
Movement Group Bor	oulto			EB			WE)			NID			CD.	
	pency HNTB malyst TVF urisdiction tersection Quincy Ave le Name I-09_2012-04-24_RecP roject Description Recommended Preferre remand Information percent Movement remand (v), veh/h gnal Information ycle, s 120.0 Reference Phase 2 ffset, s 0 Reference Point Er recordinated No Simult. Gap E/W Corce Mode Fixed Simult. Gap N/S Corce Mode Fixed Simult. Gap N/				l D		T		₹	, [NB T	D	- -	SB	В
			L	T	R	L	- 1		`	L		R	L	Т	R
	\ a la /la		7		14				-	5	2		-	6	16
			11		11				-	141	1685		-	338	336
	. , ,		1774 0.5		1579 0.5			+	-	1774 4.5	1773 46.1		_	1863	1852 14.4
	• • •		0.5		0.5					4.5	46.1			14.4	14.4
	e Time (<i>9c)</i> , s		606		677				-	473	2039		_	854	849
	atio (X)		0.018		0.016				-	0.299	0.826			0.396	0.396
			606		677			+	-	473	2039			854	849
	·		0.2		0.2			+		1.8	18.6			6.5	6.5
			0.2		0.2				\dashv	0.0	0.0			0.0	0.0
			0.02		0.02					0.07	0.65			0.0	0.33
			26.2		19.7					13.9	20.6			21.5	21.5
			0.0		0.0					0.1	3.1			1.4	1.4
			0.0		0.0					0.0	0.0			0.0	0.0
			26.2		19.7					14.0	23.8			22.9	22.9
Level of Service (LOS)			С		В					В	С			С	С
Approach Delay, s/veh			22.9		С	0.0				23.0		С	22.9		С
Intersection Delay, s/ve						3.0							С		
Multimodal Results				EB			WE		4		NB			SB	
Pedestrian LOS Score			2.9		С	2.8		С	_	0.7		A	2.3	_	В
Bicycle LOS Score / LO	JS				F					2.0		Α	1.0		Α


		HCS 20	010 S	ignali	zed l	nters	ectior	n Res	sults S	umm	ary	I-1	0 AM Pe	eak Hou	r
								N.							
General Inform	nation	X							Intersec		v	n	_		يا ط
Agency		HNTB							Duration	, h	0.25			, ,	
Analyst		TVF		Analys	sis Date	e May 9	, 2012		Area Typ	е	Other		^		<u>.</u>
Jurisdiction				Time F	Period	AM P	eak Hou		PHF		0.92			W ‡ E 8	<u>*</u> ∓ ∠− -
Intersection		Cedar Avenue		Analys	sis Yea	r 2020			Analysis	Period	1> 7:0	00	_		* ✓
File Name														<u>ጎተተ</u> ተ	
Project Descrip	tion	Recommended Pre	ferred A	Iternati	ve AM	Peak (I '	10)	_	_	_	_	_	1	4 • • • •	P 7
Demand Inform	nation				EB			WE	3		NB			SB	
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), ve	h/h			70	310	10	140	180	0 100	30	1050	420	30	460	70
1		Y			14	- E	$\exists z$						-4-	_	_
Cycle, s			2		<u>5</u> †	<u>ح</u> اح	TR '					1	Y_2	3	→ ₄
Offset, s	fset, s 0 Reference Point E coordinated No Simult. Gap E/W C rce Mode Fixed Simult. Gap N/S C			Green		8.5	43.3	0.0	0.0	0.0			_		Ā
Uncoordinated	coordinated No Simult. Gap E/W Core Mode Fixed Simult. Gap N/S Core Results		On	Yellow	-	3.5	3.5	0.0		0.0					
Force Mode	cle, s 120.0 Reference Phase set, s 0 Reference Point E Coordinated No Simult. Gap E/W Coe Mode Fixed Simult. Gap N/S Coer Results Signed Phase See Number Gas See Duration, s		On	Red	1.5	0.0	1.5	0.0	0.0	0.0		5	6	7	8
Timor Posults	proach Movement proach			EBI		EBT	WB	1	WBT	NBI		NBT	SBI		SBT
	gnal Information Icle, s			EDI	-	4	3	_	8	INDL	_	2	SDI	-	6
Case Number	ncoordinated No Simult. Gap E/W O proce Mode Fixed Simult. Gap N/S O proce Mode Fixed Simult. Gap N/S O proce Mode Fixed Simult. Gap N/S O proce Mode Fixed Simult. Gap N/S O proce Mode Fixed Simult. Gap N/S O proce Mode Fixed Simult. Gap E/W O proce Mode Fixed Simult. Gap E/W O proce Mode Fixed Simult. Gap E/W O proce Mode Fixed Simult. Gap E/W O proce Mode Fixed Simult. Gap E/W O proce Mode Fixed Simult. Gap E/W O proce Mode Fixed Simult. Gap E/W O proce Mode Fixed Simult. Gap E/W O proce Mode Fixed Simult. Gap E/W O proce Mode Fixed Simult. Gap N/S O proce Mode Fixed					6.3	1.0		4.0			6.0			6.0
	mer Results signed Phase se Number ase Duration, s ange Period, (Y+Rc), s ax Allow Headway (MAH), s leue Clearance Time (gs), s een Extension Time (ge), s					48.3	12.0		60.3			59.7			59.7
	cle, s cle, s					5.0	3.5	_	5.0			5.0			5.0
	cle, s cle, s					3.1	2.8	_	3.1			0.0			0.0
	Inal Information Cle, s 120.0 Reference Phase 25 Set, s 0 Reference Point E Coordinated No Simult. Gap E/W Coordinated Simult. Gap N/S Coordinated Coordina					10.0	8.2	_	15.6			0.0			0.0
	cle, s cle, s				_	1.4	0.0	_	1.4	_	_	0.0		_	0.0
	isidiction ersection Recommended Preferr mand Information proach Movement mand (v), veh/h gnal Information cle, s					1.00	1.00	_	1.00			0.0			0.0
	mand Information proach Movement mand (v), veh/h gnal Information cle, s					0.00	1.00	_	0.00					_	
Max Sur Tobal	TVF Intersection Itersection					0.00	1.00		0.00						
	TVF Irrisdiction Itersection				EB			WB			NB			SB	
Approach Move	rcle, s 120.0 Reference Phase 22 fset, s 0 Reference Point Er fset, s 0 Reference Point Er fset, s 0 Reference Point Er fset, s 0 Reference Point Er fset, s 0 Reference Point Er fset, s 0 Reference Point Er fset, s 0 Reference Point Er fset, s 0 Reference Point Er fset, s 0 Reference Point Er fset, s 0 Reference Point Er fset, s 0 Reference Phase fset, s 0 Reference Phase fset, s 0 Reference Phase fset, s 0 Reference Phase fset, s 0 Reference Phase fset, s 0 Reference Phase fset, s 0 Reference Phase fset, s 0 Reference Phase fset, s 0 fset, s			L	T	R	L	Т	R	L	T	R	L	Т	R
				7	4	14	3	8	18	5	2	12	1	6	16
				76	174	173	152	304		33	1141	457	33	294	282
				1071	1863		1774	1750		834	1863	1579	317	1863	1777
	,,,	· · · ·		6.0	7.9	8.0	6.2	13.6		3.2	28.8	26.6	10.8	12.2	12.3
		e Time (gc), s		7.6	7.9	8.0	6.2	13.6		15.5	28.8	26.6	39.6	12.2	12.3
		atio (V)		432	672	665	489	807	7	354	1698 0.672	720	128	849	810
				0.176 432	0.260		0.311	0.377		0.092 354		0.634	0.254	0.346	0.349
		•		1.5	672 3.5	3.5	489 2.6	807 5.5		0.7	1698 12.7	720 10.2	128	849 5.5	810 5.3
				0.0	0.0	0.0	0.0	0.0		0.7	0.0	0.0	0.0	0.0	0.0
)	0.0	0.0	0.0	0.0	0.0		0.03	0.0	0.0	0.05	0.0	0.0
			,	27.5	27.0	27.1	20.5	21.1	_	26.1	25.6	25.0	41.2	21.1	21.1
				0.1	0.1	0.1	0.1	0.1		0.3	1.4	2.7	4.4	1.1	1.1
	and Information roach Movement and (v), veh/h al Information e, s 120.0 Reference Phase 2 et, s 0 Reference Point En pordinated No Simult. Gap E/W Co e Mode Fixed Simult. Gap N/S Co er Results gned Phase e Number se Duration, s ange Period, (Y+Rc), s Allow Headway (MAH), s are Clearance Time (gs), s an Extension Time (ge), s are Extension Time (ge), s are Eall Probability Out Probability Out Probability ement Group Results roach Movement gned Movement sted Flow Rate (v), veh/h sted Saturation Flow Rate (s), veh/h/In are Service Time (gs), s acity (c), veh/h me-to-Capacity (ca), veh/h and Capacity (ca), veh/ln and Capacity (ca), veh/ln are Storage Ratio (RQ) (50th percentile) arm Delay (d1), s/veh arm Delay (d2), s/veh arm Delay (d3), s/veh arm Delay (d3), s/veh arm Delay (d3), s/veh arm Delay (d3), s/veh arm Delay (d3), s/veh arm Delay (d3), s/veh arm Delay (d3), s/veh arm Delay (d3), s/veh arm Delay (d3), s/veh arm Delay (d3), s/veh arm Delay (d3), s/veh arm Delay (d3), s/veh arm Delay (d3), s/veh arm Delay (d3), s/veh arm Delay (d3), s/veh arm Delay (d3), s/veh arm Delay (d3), s/veh arm Delay (d3), s/veh arm Delay (d3), s/veh			0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
	recy HNTB TVF diction Section Cedar Avenue Name Cot Description Recommended Preferre Cot Description			27.6	27.1	27.1	20.6	21.2		26.5	27.0	27.7	45.6	22.1	22.2
				С	С	С	С	С		С	С	С	D	C	С
				27.2		С	21.0		С	27.2		С	23.4		С
Intersection De						25	5.6						С		
								11.75			,				
Multimodal Re		// 00		0.0	EB		2.5	WB		0.5	NB	<u></u>	2 .	SB	
Pedestrian LOS				3.0	_	C	3.2		C	2.7	_	В	2.4	-	В
Bicycle LOS Sc	ore / LC	JS		0.8		Α	1.2		Α	1.4		Α	1.0		Α

		HCS 20	010 S	ignali	zed l	nterse	ection	n Res	ults S	umm	ary	I-1	1 AM Pe	eak Hou	ır
	nation	1						_	ntersec		v	on	_	1 1 1	<u>b. l.</u>
Agency									Duration,		0.25			•	E
Analyst		TVF		-		e May 9		_	Area Typ	e	Other		^_ _		4 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Jurisdiction				Time F	Period	AM P	eak Hou		PHF		0.92			w	← ⊕
Intersection		Carnegie Avenue		Analys	is Yea	r 2020		/	Analysis	Period	1> 7:0	00	_		√ ₩
File Name														<u>ጎተተ</u>	
Project Descrip	tion	Recommended Pre	ferred A	lternativ	/e AM	Peak (I 1	l1)	_	_	_	_	_	1	4 1 4 4	ħ r
Demand Inform	nation				EB			WE	3	T	NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
				10	530	30	180	153	0 110	50	1050	20	40	380	10
					1 11:										
		Y			147	E	∃ a ₹						-4-	_	_
Cycle, s			2		l 🚮	∠ اح	Ħ,					1	Y_2	3	→ 4
Offset, s	fset, s 0 Reference Point E succoordinated No Simult. Gap E/W cree Mode Fixed Simult. Gap N/S C			Green		10.5	49.0	0.0	0.0	0.0			_		Ī.
Uncoordinated	coordinated No Simult. Gap E/W Corce Mode Fixed Simult. Gap N/S Coner Results		On	Yellow	3.5	3.5	3.5	0.0	0.0	0.0					₹
Force Mode	set, s 0 Reference Point E coordinated No Simult. Gap E/W C rce Mode Fixed Simult. Gap N/S C ner Results signed Phase		On	Red	1.5	0.0	1.5	0.0	0.0	0.0		5	6	7	8
Timer Deculto	proach Movement promation Indicate the property of the prope			EBI	_	EBT	WB		WBT	NBI	_	NBT	SBI		SBT
	gnal Information vole, s fset, s O Reference Phase fset, s O Reference Point En factordinated No Simult. Gap E/W Fixed Simult. Gap N/S Commer Results Esigned Phase Fase Number Fixed			EDI	-	4	3	_	8	INDL	-	2	SDI	-	6
Case Number	mer Results ssigned Phase ase Number hase Duration, s hange Period, (Y+Rc), s					6.3	1.0		3.0			6.0			6.0
	mer Results signed Phase use Number use Duration, s usange Period, (Y+Rc), s usax Allow Headway (MAH), s useue Clearance Time (gs), s					54.0	14.0		68.0			52.0			52.0
	coordinated No Simult. Gap E/W Core Mode Fixed Simult. Gap N/S Core Results Signed Phase See Number Case Duration, seange Period, (Y+Rc), sex Allow Headway (MAH), see Clearance Time (gs), seen Extension Time (ge), sease Call Probability					5.0	3.5	_	5.0			5.0			5.0
	coordinated No Simult. Gap E/W Coordinated Fixed Simult. Gap N/S Content Results Signed Phase See Number See Duration, so Sange Period, (Y+Rc), so Allow Headway (MAH), so See Clarance Time (gs), so See Call Probability					3.1	2.8	_	3.1			0.0		_	0.0
	set, s Coordinated No Simult. Gap E/W Coordinated No Simult. Gap E/W Coordinated Fixed Simult. Gap N/S Coordinated Fixe					42.4	9.3	_	52.3			0.0		_	0.0
	coordinated No Simult. Gap E/W Corce Mode Fixed Simult. Gap N/S Co					3.9	0.0	_	5.4			0.0		_	0.0
	mand Information proach Movement mand (v), veh/h gnal Information cle, s					1.00	1.00		1.00			0.0			0.0
	mand Information proach Movement mand (v), veh/h gnal Information cle, s					0.69	1.00	_	0.45					_	
Wax Out Flobal	le Name roject Description Recommended Preferre Remand Information Remand (v), veh/h Remand (v), veh/h Reference Phase Reference Point Remand (v), veh/h Reference Point Reference Point Remand (v), veh/h Reference Point Reference Point Reference Mode Reference Point Reference Mode Reference Point Reference Poin					0.09	1.00	,	0.45						
Movement Gro	malyst TVF prisdiction tersection Carnegie Avenue le Name roject Description Recommended Preferre remand Information oproach Movement emand (v), veh/h remand (v), veh/h remand Information oproach Movement emand (v), veh/h remand Information oproach Movement emand (v), veh/h remand Information oproach Movement emand (v), veh/h remand Information oproach Movement emand (v), veh/h remand Information oproach Movement emand (v), veh/h remand Information oproach Movement emand Information oproach Movement emand Information oproach Movement emand (v), veh/h remand Information oproach Movement emand Information oproach Movement emand Information oproach Movement emand (v), veh/h remand Information oproach Movement emand Information oproach Movement emand Information oproach Movement emand Information oproach Movement emand (v), veh/h oproach Information oproac				EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14	3	8	18	5	2	12	1	6	16
				11	307	302	196	1663	120	54	778	385	43	213	211
				298	1863	_	1774	1773	1579	959	1863	1844	481	1863	1846
	,,,	· · · ·		4.1	14.0	14.0	7.3	50.3		5.0	19.3	19.3	9.2	9.4	9.4
		e time (gc), s		40.4	14.0	14.0	7.3	50.3	4.7	14.4	19.3	19.3	28.4	9.4	9.4
1 3 () .				91	761	746	451	1862		360	1459	722	171	730	723
				0.119	0.403	_	0.434	0.893		0.151	0.533	0.533	0.254	0.291	0.292
		•		91	761	746	451	1862		360	1459	722	171	730	723
	. ,			0.3	6.1	6.0	2.9	21.4	1.7	1.2	8.6	8.7	1.2	4.3	4.3
			\	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
)	49.8	25.1	25.2	17.4	25.5	14.6	30.0	28.1	28.1	39.0	25.1	25.1
				0.2	0.1	0.1	0.2	5.8	0.0	0.5	0.8	1.5	3.3	0.9	0.9
				0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	TVF diction Section Carnegie Avenue Recommended Preferre and Information Cach Movement and (v), veh/h al Information Cach Movement			50.0	25.3	25.3	17.7	31.3	14.7	30.5	28.8	29.6	42.3	26.0	26.0
	-			D	25.5 C	C C	B	C C	B	C	C C	29.0 C	42.3 D	C C	20.0
				25.7		С	28.9		С	29.1		С	27.5		С
Intersection Del							3.4						C		
Multimodal Re					EB			WB			NB			SB	
Pedestrian LOS				2.9		С	3.1		С	2.9		С	2.8		С
Bicycle LOS Sc	ore / LC	OS		1.0		Α	2.1		В	1.2		Α	0.9		Α

HCS 2010 Signalized Intersection Results Summary

I-12 AM Peak Hour

General Information				Intersection Info	rmation
Agency	HNTB			Duration, h	0.25
Analyst	TVF	Analysis Date	May 9, 2012	Area Type	Other
Jurisdiction		Time Period	AM Peak Hour	PHF	0.92
Intersection	Euclid Avenue	Analysis Year	2020	Analysis Period	1> 7:00
File Name					
Project Description	Recommended Preferred A	Iternative AM P	eak (I 12)		

Intersection		Euclid Avenue		Analys	is Year	2020		Α	nalysis	Period	1> 7:0	00	100		¥
File Name														ጎተተሰ	
Project Descripti	ion	Recommended Pre	ferred A	lternativ	e AM P	eak (I 1	2)							* I EY	2.5
Dame and Inform							7	N/D			ND		7	00	
					EB T	В	+	WB T	T D	+ .	NB T	ТВ	+ -	SB	R
				100	_	R	₩-		R	L		R 400	L 10	_	_
Demand (v), ver	1/11	_	-	160	300	60	40	410	20	90	520	480	10	310	260
Signal Informat	tion				1		5								
		Reference Phase	2			26	- ·	7					V	-	-
Offset, s	0	Reference Point	End	C====	20.0	22.5	40.7		0.0	0.0		1	1 2	2	¥ 4
Uncoordinated	No	Simult. Gap E/W	On	Green Yellow		22.5 3.5	3.5	0.0	0.0	0.0				_	4
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	1.5	6.5	0.0	0.0	0.0		5	6	7	8
Timer Results				EBL	.	EBT	WBI	<u> </u>	WBT	NBI	_ _	NBT	SBI		SBT
Assigned Phase)			7		4	3		8			2			6
Case Number				2.0	_	4.0	2.0	_	4.0			5.0	_	_	6.0
Phase Duration,				27.5	_	50.7	27.5	_	50.7			41.8	_		41.8
				5.0	_	10.0	5.0		10.0	_	_	5.0	_	-	5.0
				2.8	_	3.2	2.8	_	3.2			0.0	-		0.0
				12.6 0.2	_	23.9 1.8	4.4 0.0	_	28.9 1.6			0.0			0.0
		(<i>ge)</i> , 5		1.00	_	1.00	1.00	_	1.00			0.0			0.0
				0.00		0.01	0.00		0.04						
Max Gut Fobab	,,,,,			0.00		,	0.00		0.01						
Movement Grou	up Res	ults			EB			WB			NB			SB	
Approach Mover	ment			L	Т	R	L	T	R	L	Т	R	L	T	R
Assigned Mover	ment			7	4	14	3	8	18	5	2	12	1	6	16
				174	391		43	467		98	565	522	11	337	283
				1774	1808		1774	1847		801	1773	1579	842	1863	1579
				10.6	21.9		2.4	26.9		14.1	15.8	30.0	1.3	18.4	18.1
		e Time <i>(gշ)</i> , s		10.6	21.9		2.4	26.9		32.5	15.8	30.0	17.1	18.4	18.1
Capacity (c), veh				333	613		333	627		183	1088	780	208	571	484
	-			0.523	0.638		0.131	0.746		0.535	0.520	0.669	0.052	0.590	0.584
	• ` /			333	613		333	627		183	1088	780	208	571	484
				4.8	10.0		1.1	12.9		3.0	6.8	11.1	0.3	8.9	7.5
			\	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
)	0.24 43.9	0.51 33.4		0.05	0.62 35.1		0.13 49.0	0.29 34.3	0.28	0.02 41.3	0.50 35.2	0.42 35.1
- 1				0.7	1.7		40.6 0.1	4.3		49.0	0.7	22.9 1.7	0.4	4.0	4.6
				0.0	0.0		0.1	0.0		0.0	0.0	0.0	0.4	0.0	0.0
	• • •	·		44.6	35.1		40.7	39.4		53.1	35.0	24.6	41.8	39.2	39.7
	•			D D	D		D	D		D	C	C C	D D	D D	D D
		/LOS		38.1		D	39.5		D	31.9		С	39.5		D
	Reference Phase Reference Point Reference Point Redinated No Simult. Gap E/W Mode Fixed Simult. Gap N/S Results Red Phase Number Duration, s Re Period, (Y+Rc), s Illow Headway (MAH), s Call Probability Call Probabil					36							D		
Multimodal Res	sults				EB			WB			NB			SB	
Pedestrian LOS	Score	/LOS		3.0		С	2.8		С	2.3		В	2.3		В
Bicycle LOS Sco	ore / LC	OS		1.4		Α	1.3		Α	1.5		Α	1.0		Α

		HCS 20	010 S	ignali	zed I	nterse	ection	Res	ults S	umm	ary	I-1	3 AM Pe	eak Hou	r
General Inform	nation	X						_	Intersec		v	n	_	1 1 7 2 1	Ŀ L
Agency									Duration,	h	0.25			* * *	F. 1
Analyst		TVF		Analys	is Date	May 9	, 2012	_	Area Typ	е	Other		_ <u>-</u>		<u>↓</u> <u>↓</u> ↓ ↓
Jurisdiction				Time F	Period	AM P	eak Hou		PHF		0.92			W∳E	√ ←
Intersection		Chester Avenue		Analys	is Year	2020			Analysis	Period	1> 7:0	00			₩
File Name														<u>ጎተ</u> ት	
Project Descrip	tion	Recommended Pre	ferred A	lternativ	/e AM I	Peak (I 1	13)	_	_	_	_	_	T	4 † • Y	P
Demand Inform	nation				EB		1	WE	3	T	NB			SB	
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R
				170	510	90	10	112	0 90	90	530	30	40	460	10
															,
					1	l _a	3 6	4					-4-		_
Cycle, s	120.0		2		50	, ₩	Ħ.					1	\mathbf{Y}_{2}	3	→ ₄
Offset, s	ncoordinated No Simult. Gap E/W Corce Mode Fixed Simult. Gap N/S C			Green		9.5	54.3	0.0	0.0	0.0					Ā
Uncoordinated	ncoordinated No Simult. Gap E/W Corce Mode Fixed Simult. Gap N/S Comer Results			Yellow	3.5	3.5	3.5	0.0	0.0	0.0			<u> </u>	→	₹
Force Mode	fset, s 0 Reference Point Encoordinated No Simult. Gap E/W Corce Mode Fixed Simult. Gap N/S Commer Results signed Phase ase Number			Red	1.5	0.0	1.5	0.0	0.0	0.0		5	6	7	8
Times Beauty	ignal Information ycle, s			EDI		EDT	N/D		WDT	NDI		NDT	ODI		ODT
	pproach Movement emand (v), veh/h ignal Information ycle, s			EBI 7	-	EBT 4	WB	<u> </u>	WBT 8	NBI	-	NBT 2	SBI	-	SBT 6
	ycle, s 120.0 Reference Phase 2 ffset, s 0 Reference Point En ncoordinated No Simult. Gap E/W On			1.0		4.0			6.3			6.0			6.0
	mer Results signed Phase ase Number hase Duration, s hange Period, (Y+Rc), s ax Allow Headway (MAH), s ueue Clearance Time (gs), s reen Extension Time (ge), s			13.0		72.3		_	59.3			47.7		_	47.7
	gnal Information Incle, s			3.5	<u>' </u>	5.0	-		5.0			5.0		_	5.0
	ncoordinated No Simult. Gap E/W O rce Mode Fixed Simult. Gap N/S O mer Results signed Phase use Number use Duration, s mange Period, (Y+Rc), s ax Allow Headway (MAH), s useue Clearance Time (gs), s een Extension Time (ge), s uses Call Probability			2.8	_	3.1	_	_	3.1			0.0		_	0.0
	role, s role,			8.3		9.3			38.7			0.0			0.0
	vicle, s vic			0.0	-	5.0	_	-	4.4			0.0		_	0.0
	tersection Ide Name Toject Description Toproach Movement Tomand Information Toproach Movement Toproach			1.00	- 	1.00	-	_	1.00			0.0		_	0.0
	tersection The Name oject Description Permand Information oproach Movement permand (v), veh/h gnal Information offset, s 120.0 Reference Phase ffset, s 0 Reference Point Error frocordinated No Simult. Gap E/W orce Mode Fixed Simult. Gap N/S orce Mode Fixed Simult. Gap N/S orce Mode Fixed Simult. Gap N/S orce Mode Fixed Simult. Gap N/S orce Mode Fixed Simult. Gap N/S orce Mode Fixed Simult. Gap N/S orce Mode Fixed Simult. Gap N/S orce Mode Fixed Simult. Gap N/S orce Mode Fixed Simult. Gap N/S orce Mode Fixed Simult. Gap N/S orce Mode Fixed Simult. Gap N/S orce Mode Fixed Simult. Gap N/S orce Note			1.00		0.00		-	0.16						
Wax Out 1 Tobal	Inalyst TVF Irrisdiction Itersection Iter			1.00		0.00			0.10						
Movement Gro	eneral Information gency HNTB Insidiction Itersection Chester Avenue Ile Name Project Description Recommended Preferre emand Information Improved Movement Improved Movemen				EB			WB			NB			SB	
Approach Move	proach Movement emand (v), veh/h ignal Information ycle, s			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	mer Results ssigned Phase ase Number hase Duration, s hange Period, (Y+Rc), s ax Allow Headway (MAH), s ueue Clearance Time (gs), s reen Extension Time (ge), s hase Call Probability ax Out Probability ovement Group Results byroach Movement ssigned Movement			7	4	14	3	8	18	5	2	12	1	6	16
				185	443	209	11	665	650	98	307	302	43	256	255
				1774	1863	1718	777	1863		886	1863	1827	809	1863	1849
	,,,	· · · ·		6.3	7.1	7.3	0.9	36.5		11.1	15.2	15.3	5.3	12.3	12.4
		e lime (gc), s		6.3	7.1	7.3	0.9	36.5	36.7	23.5	15.2	15.3	20.6	12.3	12.4
				261	2089	964	412	843	821	284	663	650	245	663	658
				0.707	0.212	_	0.026	0.789		0.345	0.463	0.464	0.178	0.387	0.387
		•		261	2089	964	412	843	821	284	663	650	245	663	658 5.7
				6.0	2.9	2.8	0.2	16.8	16.5	2.6	7.0	6.9	1.1	5.8	
)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
			,	24.0	13.1	13.2	18.2	28.0	28.0	37.6	29.8	29.8	37.8	28.9	28.9
				7.2	0.0	0.0	0.0	4.7	4.9	2.0	1.4	1.5	1.6	1.7	1.7
	roach Movement roach Movement roach Movement roach Movement roach Movement roach Movement roach Movement roach Movement roach Movement roach Movement roach Movement roach Mode reference Point roach Mode reference Point roach Mode reference Point roach Mode reference Point roach Mode reference Point roach Mode reference Point roach Movement roach Movement roach Movement roach Movement roach Movement roach Movement roach Movement roach Movement roach Movement roach Movement roach Movement roach Rate (v), veh/h roach Saturation Flow Rate (s), veh/h/In roach Saturation Flow Rate (s), veh/h/In roach Saturation Flow Rate (s), veh/h/In roach Roach Ratio (X) roach Roach Ratio (X) roach Roach Ratio (X) roach Roach Ratio (RQ), veh/ln roach Roach Ratio (RQ), veh/ln roach Roach Ratio (RQ) (50th percentile) roach Roach Ratio (RQ), s/veh roach Roach Ratio (RQ), s/veh roach Roach Ratio (RQ), s/veh roach Roach Ratio (RQ), s/veh roach Roach Ratio (RQ), s/veh roach Roach Ratio (RQ), s/veh roach Roach Ratio (RQ), s/veh roach Roach Ratio (RQ), s/veh roach Roach Ratio (RQ), s/veh roach Roach Ratio (RQ), s/veh roach Roach Ratio (RQ), s/veh			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	TVF Incovery HNTB I			31.2	13.2	13.2	18.3	32.6	32.9	39.7	31.2	31.3	39.3	30.6	30.6
				С	В	В	В	C	C	D	C	С	D	C	C
				17.2		В	32.7		С	32.4		С	31.3		С
Intersection Del							3.6						С		
Multimodal Re					EB			WB			NB			SB	
Pedestrian LOS				2.8		С	2.8		С	3.2		С	3.0		С
Bicycle LOS Sc	ore / LC	DS		0.9		Α	1.6		Α	1.1		Α	0.9		Α

Appendix E: HCS Analysis Results - Signalized Intersections (2020 PM Peak Hour)

Analyst: TVF Inter.: E. 55th St & Quadrant Agency: HNTB Area Type: All other areas

Date: 04/18/2012

Jurisd: Year : 2020

Period: PM Project ID: Recommended Preferred Alternative PM Peak Period (I-01) E/W St: Quadrant N/S St: E. 55th Street

E/W St: Qua	adrant					N/S	S St: E	G. 551	th Str	eet				
			C T (~NT 7 T T F	7 17 15	TMEDCE	COUTON	CIIMM	N D 37					
	l Fact	bound	SI		LED stbo	INTERSE		SUMM <i>i</i> thbo:		I 9/	outhl	h0111		
	L	T R	\	l L	T	R	L	Т	R	L	Juein T		R	İ
				-	_			_		_	_			i
No. Lanes	1 0	0 0)	1	0	1	0	2	0		1 :	2	0	
LGConfig				l L		R		TR		L		T		
Volume				120		120		240	170	240	12			
Lane Width	.			111.0		11.0		11.0	0	111.0	0 11	.0		
RTOR Vol						0			0					
Duration	0.25	Ar	ea :	Type:	All	other	areas							
						Operat								
Phase Comb	ination	1	2	3		4		5	6		7	8		
EB Left						NB	Left							
Thru							Thru		Р					
Right Peds						Ì	Right Peds		A X					
WB Left		A				l I SB	Left	А	A P					
Thru		11				1 00	Thru	P	P					
Right		A				İ	Right	-						
Peds							Peds							
NB Right						EB	Right							
SB Right						WB	Right		4.0	^				
Green	-	35.0						7.0	43.	(1)				
Yellow	3	3.5						3.5	3.5					
	3							3.5 1.5	3.5 1.5		: 10	0.0	5	3ecs
Yellow	3	3.5 5	ersed	ction	Per	formanc	ce Summ	3.5 1.5 Cyc	3.5		: 10	0.0	S	secs
Yellow	3 1 	3.5 5			Per atio		ce Summ Lane	3.5 1.5 Cyo nary_	3.5 1.5 cle Le			0.0		3ecs
Yellow All Red Appr/ Lan Lane Gro	ne oup	3.5 5 Inte Adj S Flow R	Sat Rate	Rá	atio	S	Lane	3.5 1.5 Cyc nary_ Group	3.5 1.5 cle Le	ngth proa	ch	0.0		3ecs
Yellow All Red Appr/ Lan Lane Gro	.ne	8.5 5 Inte Adj S	Sat Rate		atio			3.5 1.5 Cyc nary_ Group	3.5 1.5 cle Le	ngth	ch	0.0		secs
Yellow All Red Appr/ Lane Gro Grp Cap	ne oup	3.5 5 Inte Adj S Flow R	Sat Rate	Rá	atio	S	Lane	3.5 1.5 Cyc nary_ Group	3.5 1.5 cle Le	ngth proa	ch	0.0		secs
Yellow All Red Appr/ Lan Lane Gro	ne oup	3.5 5 Inte Adj S Flow R	Sat Rate	Rá	atio	S	Lane	3.5 1.5 Cyc nary_ Group	3.5 1.5 cle Le	ngth proa	ch	0.0		3ecs
Yellow All Red Appr/ Lane Gro Grp Cap	ne oup	3.5 5 Inte Adj S Flow R	Sat Rate	Rá	atio	S	Lane	3.5 1.5 Cyc nary_ Group	3.5 1.5 cle Le	ngth proa	ch	0.0		3ecs
Yellow All Red Appr/ Lane Gro Grp Cap	ne oup	3.5 5 Inte Adj S Flow R	Sat Rate	Rá	atio	S	Lane	3.5 1.5 Cyc nary_ Group	3.5 1.5 cle Le	ngth proa	ch	0.0		3ecs
Yellow All Red Appr/ Lane Gro Grp Can Eastbound	ne Toup pacity	3.5 5 Inte Adj S Flow R (s)	Sat Rate	Rá 	atio 	s 	Lane ————————————————————————————————————	3.5 1.5 Cyc ary_ Group	3.5 1.5 cle Le	ngth proa	ch	0.0		3ecs
Yellow All Red Appr/ Lane Gro Grp Can Eastbound	ne oup	3.5 5 Inte Adj S Flow R	Sat Rate	Rá 	atio 	S	Lane ————————————————————————————————————	3.5 1.5 Cyc nary_ Group	3.5 1.5 cle Le	ngth proac ay Lo	os Os	0.0		secs
Yellow All Red Appr/ Lane Gro Grp Cap Eastbound Westbound L 5	ne Toup pacity	3.5 5 Inte Adj S Flow R (s)	Sat Rate	Ra v/c	atio 	s g/C 	Lane Delay	3.5 1.5 Cycnary_ Group LOS	3.5 1.5 cle Le	ngth proac ay Lo	ch	0.0	ξ	secs
Yellow All Red Appr/ Lane Grp Cap Eastbound Westbound L 5: R 7:	ne oup pacity	3.5 5 Inte Adj S Flow R (s)	Sat Rate	Ra v/c	atio 	s 	Lane Delay	3.5 1.5 Cyc ary_ Group	3.5 1.5 cle Le	ngth proac ay Lo	os Os	0.0		3ecs
Yellow All Red Appr/ Lane Gro Grp Cap Eastbound Westbound L 5	ne oup pacity	3.5 5 Inte Adj S Flow R (s)	Sat Rate	Ra v/c	atio 	s g/C 	Lane Delay	3.5 1.5 Cycnary_ Group LOS	3.5 1.5 cle Le	ngth proac ay Lo	os Os	0.0	£	secs
Yellow All Red Appr/ Lane Gro Grp Cap Eastbound Westbound L 5: R 7: Northbound	ne oup pacity	3.5 5 Inte Adj S Flow R (s) 1711 1531	Sat Rate	Ra v/c	2	s g/C 0.35	Lane Delay 23.0 15.5	3.5 1.5 Cycnary_ Group LOS	3.5 1.5 cle Le	ngth proac	os Os	0.0	ξ.	secs
Yellow All Red Appr/ Lane Gro Grp Cap Eastbound Westbound L 5: R 7: Northbound	ne oup pacity	3.5 5 Inte Adj S Flow R (s)	Sat Rate	0.22 0.18	2	s g/C 	Lane Delay 23.0 15.5	3.5 1.5 Cyonary_ Groung LOS	3.5 1.5 cle Le Del	ngth proac	ch	0.0	2	secs
Yellow All Red Appr/ Lane Gre Grp Cap Eastbound Westbound L 5: R 7: Northbound TR 1: Southbound	ne oup pacity 99 20	Inte Adj S Flow R (s) 1711 1531	ate Rate	0.22 0.18	2	s g/C 0.35 0.47	23.0 15.5	3.5 1.5 Cycury Group LOS C B	3.5 1.5 cle Le Del	ngth proac	ch	0.0		Secs
Yellow All Red Appr/ Lane Gregory Cap Eastbound Westbound L 5: R 7: Northbound TR 1: Southbound L 4:	ne oup pacity	Inte Adj S Flow R (s) 1711 1531 3215	Sat Rate	$\frac{Ra}{v/c}$ 0.22 0.18 0.32	2	s g/C 0.35 0.47 0.43	23.0 15.5 18.0	3.5 1.5 Cycury Group LOS C B	3.5 1.5 cle Le De April Del	ngth proac ay Lo	ch	0.0		secs
Yellow All Red Appr/ Lane Gregory Cap Eastbound Westbound L 5: R 7: Northbound TR 1: Southbound L 4:	ne oup pacity 99 20	Inte Adj S Flow R (s) 1711 1531	Sat Rate	0.22 0.18	2	s g/C 0.35 0.47	23.0 15.5 18.0	3.5 1.5 Cycury Group LOS C B	3.5 1.5 cle Le Del	ngth proac ay Lo	ch	0.0	ξ.	secs
Appr/ Lane Grogro Cap Eastbound Westbound L 5: R 7: Northbound TR 1: Southbound L 4: T 1:	ne oup pacity	Integrated Adj S Flow R (s) 1711 1531 3215 1711 3428	Sat Rate	0.22 0.18 0.32	atio 	s g/C 0.35 0.47 0.43 0.55 0.55	23.0 15.5 19.5	3.5 1.5 Cyonary_ Groung LOS	3.5 1.5 cle Le Del Del	ngth proac ay Lo	ch OS 3			Secs

I-02 PM Peak Hour

Analyst: TVF Inter.: Boulevard & Quadrant Agency: HNTB Area Type: All other areas

Date: 04/18/2012

Jurisd:

Period: PM Year : 2020 Project ID: Recommended Preferred Alternative (I-02)

Project ID E/W St: Bo			ed Pre	ferred		ative (I N/S St:		ant			
			ST	CNAT.T7	ED TNTFI	RSECTION	CIIMM	ΔRV			
	l Eas	stbour			tbound		rthbo		Sou	thbour	
	L	T	R	L L	T R	L	Т	R	L		R
No. Lanes LGConfig Volume Lane Width RTOR Vol	0 	3 TR 1250 11.0		1 L 80 11.0	2 0 T 1220 11.0	L 230 11.0		1 R 180 11.0 0	0	0	0
Duration	0.25		Area '		All othe	er areas					
Phase Comb EB Left Thru Right Peds WB Left Thru Right Peds NB Right SB Right Green Yellow All Red	ination	P P X P P	A P A 10.0 3.5 1.5 nterse	ction	4 1 1 1 1 1 1 1 1 1	NB Left Thru Righ Peds Thru Righ Peds Righ VB Righ	t A t t t 29.0 3.5 1.5 Cyc	cle Len	77		secs
Lane Gr	oup	Flo	w Rate								
	pacity 		(s) 	v/c 	g/C 	Dela 	y LOS		y LOS		
Eastbound											
TR 2	218	482	21	0.69	0.46	23.2	С	23.2	. C		
Westbound											
L 3	31	171	11	0.26	0.61	25.2	С				
T 2	091	342	28	0.63	0.61	13.5	В	14.3	В		
Northbound L 9		332	22	0.26	0.29	27.4	С	23.4	. C		
R 6 Southbound		153	31	0.29	0.44	18.2	В	4J•4			

Intersection Delay = 19.5 (sec/veh) Intersection LOS = B

					zed l	nterse	ection	Res	sults S	umm	ary	I-0	3 PM P	eak Hou	ır
General Inform	nation	V						_	Intersec		v	on		1 1 7 2 1	Ja l₄
Agency		HNTB							Duration,	h	0.25			+ + 3	
Analyst		TVF		Analys	sis Date	e May 9	, 2012		Area Typ	е	Other	•			\ A A A D D
Jurisdiction				Time F	Period	PM P	eak Hou	ır	PHF		0.92		4 → 4 →	W∓E 8	← ₹
Intersection		Kinsman Road		Analys	sis Yea	r 2020			Analysis	Period	1> 17	':00	Transfer of the second		* -
File Name														<u>ጎተ</u> ት	
Project Descrip	tion	Recommended Pre	ferred A	Iternati	ve PM	Peak (I-	03)	_	_	_	_	_	1	4 † • Y	ħ r
Demand Inform	nation				EB		1	WE	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
				10	1160	250	10	116	0 10	130	230	10	10	250	10
						Ļ									_
		1				발								Κ.	\mathbf{A}
Cycle, s	ycle, s 100.0 Reference Phase 2 ffset, s 0 Reference Point E ncoordinated No Simult. Gap E/W C proce Mode Fixed Simult. Gap N/S C fmer Results				3 '	T 51	2 SA	2				1	⊖ ₂	3	4
	ycle, s 100.0 Reference Phase ffset, s 0 Reference Point E ncoordinated No Simult. Gap E/W Corce Mode Fixed Simult. Gap N/S Commer Results ssigned Phase ase Number			Green		11.5	29.0	0.0	0.0	0.0			Ā	-	
	rcle, s 100.0 Reference Phase fset, s 0 Reference Point E ncoordinated No Simult. Gap E/W cree Mode Fixed Simult. Gap N/S Commer Results signed Phase ase Number hase Duration, s			Yellow	-	3.5	3.5	0.0		0.0			7		V
Force Mode	proach Movement promation ycle, s			Red	1.5	0.0	1.5	0.0	0.0	0.0	_	5	6	7	8
Timer Results	ile Name roject Description Recommended Preferr emand Information pproach Movement emand (v), veh/h ignal Information ycle, s 100.0 Reference Phase 100.0 Reference Point 100.0			EBI	T	EBT	WB		WBT	NBI		NBT	SBI		SBT
	roject Description Recommended Preference Remand Information Reproach Movement Remand (v), veh/h Regnal Information Reference Phase Reference Point Recommended Preference Remand (v), veh/h Reference Phase Reference Point Reference Point Reference Point Reference Point Reference Point Reference Point Reference Point Reference Point Reference Point Reference Point Reference Phase Reference Phase Reference Phase Reference Phase Reference Phase Reference Point Reference Point Reference Point Reference Phase Reference Phase Reference Phase Reference Phase Reference Phase Reference Phase Reference Phase Reference Phase Reference Phase Reference Phase Reference Phase Reference Phase Reference Phase Reference Phase Reference Phase Reference Phase Reference Phase Reference Phase Reference Ph			LDI	_	2	770	_	6	3	_	8	ODI	_	4
Case Number	ycle, s ycle,					6.0		+	6.0	1.0		4.0			6.3
	ffset, s O Reference Point Encoordinated No Simult. Gap E/W O Orce Mode Fixed Simult. Gap N/S O Merr Results Signed Phase Signed Phase Signed Phase Signed Period, (Y+Rc), s Simult. Gap N/S O Marr Results Signed Phase Si					51.0			51.0	15.0	_	49.0		\neg	34.0
	proach Movement proach					5.0			5.0	3.5		5.0			5.0
	proach Movement proach					0.0			0.0	2.8	_	3.0		-	3.0
	gnal Information Icle, s									7.0		6.3			7.9
	gnal Information cle, s					0.0			0.0	0.1		1.0			0.9
	risdiction dersection									1.00)	1.00			1.00
	risdiction tersection Recommended Preferre remand Information remand (v), veh/h gnal Information remand (v), veh/h gnal Information remand (v), veh/h gnal Information remand (v), veh/h gnal Information remand (v), veh/h gnal Information release In							\neg		0.09		0.00			0.00
	inalyst purisdiction between the project Description project Description project Description project Description project Description project Description project Description project Movement permand (v), veh/h inginal Information project Section of the project Description project Movement permand (v), veh/h inginal Information project Section of the project Section of the project Description project De														
	gency HNTB nalyst TVF urisdiction Itersection Kinsman Road Itersection Recommended Preferre Itemand Information Itemand Inf				EB	T =	<u> </u>	WB	_		NB		<u> </u>	SB	
	ignal Information ycle, s 100.0 Reference Phase 2 Ifset, s 0 Reference Point Er ncoordinated No Simult. Gap E/W O orce Mode Fixed Simult. Gap N/S O mer Results signed Phase ase Number hase Duration, s hange Period, (Y+Rc), s ax Allow Headway (MAH), s ueue Clearance Time (gs), s reen Extension Time (ge), s hase Call Probability ax Out Probability ovement Group Results oproach Movement dijusted Flow Rate (v), veh/h dijusted Saturation Flow Rate (s), veh/h/ln ueue Service Time (gs), s ycle Queue Clearance Time (gc), s apacity (c), veh/h olume-to-Capacity Ratio (X)			L	Т	R	<u> </u>	T	R	L	T	R	L	T	R
				5	2	12	1	6	16	3	8	18	7	4	14
				11	1054	_	11	637	635	141	131	130	11	142	141
				434 2.1	1863 21.3	1690 21.3	338 2.5	1863 28.0		1774 5.0	1863 4.2	1835 4.3	0.7	1863 5.8	1837 5.9
				30.2	21.3	21.3	23.8	28.0		5.0	4.2	4.3	0.7	5.8	5.9
		(99), 0		150	1714	_	155	857	854	528	820	807	395	540	533
		atio (X)		0.073	0.615			0.743		0.267	0.160	0.161	0.028	0.262	0.264
		. ,		150	1714	_	155	857	854	528	820	807	395	540	533
	, , ,	<u>'</u>		0.3	9.0	8.5	0.2	12.7		2.0	1.8	1.7	0.2	2.6	2.5
	. ,			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Queue Storage	Ratio (RQ) (50th percentile)	0.01	0.23	0.22	0.01	0.45	0.45	0.13	0.11	0.11	0.01	0.19	0.18
Uniform Delay	(d1), s/v	eh		34.5	20.3	20.3	29.3	22.2	22.2	18.3	16.9	16.9	25.5	27.3	27.3
Incremental De	lay <i>(d</i> 2),	, s/veh		0.8	1.3	2.9	0.8	5.2	5.3	0.1	0.0	0.0	0.0	0.1	0.1
	Recommended Preferrence Description Recommended Preferrence Description Recommended Preferrence Description Recommended Preferrence Description Recommended Preferrence Description Recommended Preferrence Description Recommended Preferrence Description Recommended Preferrence Description Recommended Preferrence Description Recommended Preferrence Description Recommended Description Recommended Description Recommended Description Recommended Description Reference Phase 2 Reference Point 2 Recommended Description Recommended Preferrence Recommended Description Recommended Preferrence Recommended Preferrence Recommended Description Recommended Preferrence Recommended Preferrence Recommended Description Recommended Preferrence Recommended Preference Recommended Preferrence Recommended Preferrence Recommended Preferrence Recommended Preferrence Recommended Preferrence Recommended Preference Recommended Preference Recommended Preference Rector Phase Recommended Preference Rector Phase Recommended Preference Rector Phase Recommended Preference Rec			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Action Book Book Book Book Book Book Book Bo			35.3	21.7	23.3	30.1	27.4		18.4	16.9	16.9	25.5	27.4	27.4
	Action HNTB TVF diction Section Kinsman Road Name Cot Description Recommended Preferrer Cot Description Coach Movement			D	С	С	C	С	С	В	В	В	C	С	С
	Extension Time (ge), see Call Probability Dut Probabilit			22.3	3	С	27.4	+	С	17.4	-	В	27.3	3	С
intersection De	iay, s/ve	en / LOS				24	1.0						С		
Multimodal Re	sults				EB			WB			NB			SB	
Pedestrian LOS		/ LOS		2.8	-	С	2.8		С	3.2		С	3.0	-	С
Bicycle LOS Sc				1.3		Α	1.5		Α	0.8	_	Α	0.7		Α
														-	

	HCS 2010 eral Information				zed I	nterse	ection	Res	sults S	umm	ary		I-04 PN	1 Peak H	lour
General Inform	nation								Intersec	tion Inf	ormatio	on	2	14591	b L
Agency		HNTB							Duration	, h	0.25			41	
Analyst		TVF		Analys	is Date	May 9	, 2012		Area Typ	е	Other		<u> </u>		
Jurisdiction				Time F	Period	PM Pe	eak Hou	ır	PHF		0.92			w∦E	+
Intersection		E. 75th Street		Analys	is Year	2020			Analysis	Period	1> 17	:00	100		-
File Name														1 1	
Project Descrip	otion	Recommended Pre	ferred A	Alternativ	/e PM F	Peak (I-0)4)							(SEE	F
Demand Infor	mation				EB			WE	3	4	NB		<u> </u>	SB	
Approach Move	ement			L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), ve	eh/h			40	1130	10	20	115	0 10	10	20	20	10	40	10
Oi-mall (-11-					111		Ţ.							
	nal Information e, s 100.0 Reference Phase 2			-		2/1/2									人
Cycle, s	100.0			-	₹.	517	7					1	♀ ₂	3	
Offset, s	0	Reference Point	End	Green		37.5	0.0	0.0		0.0			_		- 4
Uncoordinated	No	Simult. Gap E/W	On	Yellow	-	3.5	0.0	0.0		0.0					-√
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	1.5	0.0	0.0	0.0	0.0		5	6	7	
Timer Results				EBI	-	EBT	WB	L	WBT	NBI	L	NBT	SBI	_	SBT
Assigned Phas	e					2			6			8			4
Case Number						6.0			6.0			6.0			6.0
Phase Duration	า, ร					57.5			57.5			42.5			42.5
Change Period	l, (Y+Rc,), s				5.0			5.0			5.0			5.0
Max Allow Hea	dway (Λ	<i>ЛАН)</i> , s				0.0			0.0			3.2			3.2
Queue Clearan	ce Time	e (gs), s										4.5			4.1
Green Extension	on Time	<i>(g_e),</i> s				0.0			0.0			0.2			0.2
Phase Call Pro	bability	-										1.00			1.00
Max Out Proba	bility											0.00			0.00
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move				L	T	R	L	Т	R	L	Т	R	L	T	R
Assigned Move	ement			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow				43	827	412	22	631	630	11	43		11	54	
		ow Rate (s), veh/h/ln		438	1863	1854	447	1863		1344	1709		1357	1798	
Queue Service		· ·		7.9	13.6	13.6	3.1	24.4	24.4	0.5	1.6		0.5	1.9	
Cycle Queue C		e Time (gc), s		32.3	13.6	13.6	16.7	24.4	24.4	2.5	1.6		2.1	1.9	
Capacity (c), ve	eh/h			195	1956	973	246	978	975	550	641		559	674	
Volume-to-Cap	acity Ra	atio (X)		0.223	0.423	0.423	0.088	0.646	0.646	0.020	0.068		0.019	0.081	
Available Capa	city (ca)	, veh/h		195	1956	973	246	978	975	550	641		559	674	
Back of Queue	(Q), ve	h/In (50th percentile)		0.9	5.5	5.6	0.4	10.5	10.5	0.2	0.7		0.2	0.8	
Overflow Queu	e (Q3), v	veh/ln		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Queue Storage	Ratio (RQ) (50th percentile)	0.04	0.14	0.14	0.02	0.37	0.37	0.04	0.17		0.04	0.21	

Initial Queue Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0		
Control Delay (d), s/veh	30.7	15.0	15.6	20.3	20.3	20.4	20.9	20.1		20.7		
Level of Service (LOS)	С	В	В	С	С	С	С	С		С		
Approach Delay, s/veh / LOS	15.	7	В	20.4		С	20.2		С	20.3		
Intersection Delay, s/veh / LOS		18.1						В				
Multimodal Results		EB			WB			NB				
Pedestrian LOS Score / LOS	2.3	s [В	2.3		В	3.2		С	2.9		

1.2

14.5

0.5

14.5

1.1

Α

19.6

0.7

17.1

3.3

17.1

3.3

20.9

0.0

0.6

20.0

0.0

Α

28.7

2.0

Uniform Delay (d1), s/veh

Bicycle LOS Score / LOS

Incremental Delay (d2), s/veh

1.5

20.7

0.0

20.3

20.1

0.0

0.0

20.2

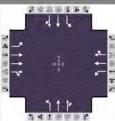
С

SB

С

С

Α


HCS 2010 Signalized Intersection Results Summary I-05 PM Peak Hour										r			
General Information Intersection Information													
General Information							Intersection Information					Ŀ Ų	
Agency HNTB						Duration	, h	0.25			47	L.	
Analyst TVF		Analysis Date May 9										<u>≛</u> <u>5</u> -	
Jurisdiction				eak Hour PHF			0.92				w		
Intersection E. 79th Street	Analy	Analysis Year				Analysis Period		1> 17	1> 17:00			* ~	
File Name											<u>ጎተኛ</u>		
Project Description Recommended Preferred Alternative PM Peak (I-05)											<u>ት</u>		
Demand Information	$\overline{}$	EB			WE	3	T	NB		SB			
Approach Movement	L	T R		L T		R L		T R		L T		R	
Demand (v), veh/h	40	950	180	210	101	0 10	120	170	170	10	10 260 50		
Cinnal Information				.	111:		-						
Signal Information			Ħ.,	∄					_	,	ζ ,	本	
	2	'	" 📑 .	1	7 5	121				♀ 2	3	4	
	nd Greer		33.3	11.5	28.7		0.0			<u> </u>			
	On Yellov	-	3.5	3.5	3.5	0.0	0.0		-	Z	_	Ψ	
Force Mode Fixed Simult. Gap N/S C	On Red	0.0	1.5	0.0	1.5	0.0	0.0		5	6	7	8	
Timer Results	EB	L	EBT	WB	L	WBT	NBI	_	NBT	SBI	_	SBT	
Assigned Phase			2	1	\neg	6	3		8			4	
Case Number			6.3	1.0		4.0	1.0		3.0			6.3	
Phase Duration, s			38.3	13.0)	51.3	15.0)	48.7			33.7	
Change Period, (Y+Rc), s			5.0	3.5		5.0	3.5		5.0			5.0	
Max Allow Headway (MAH), s			0.0	2.8		0.0	2.8		3.2		3.2		
Queue Clearance Time (gs), s				10.2	2		6.6		8.2		18.3		
Green Extension Time (g _e), s			0.0	0.0		0.0	0.1		1.4			1.2	
Phase Call Probability				1.00)		1.00)	1.00			1.00	
Max Out Probability				1.00)		0.06	6	0.00			0.04	
Movement Group Results		EB			WB			NB			SB		
Approach Movement		Т	R	L	Т	R	L	Т	R	L	Т	R	
Assigned Movement	5	2	12	1	6	16	3	8	18	7	4	14	
Adjusted Flow Rate (v), veh/h	43	842	387	228	555	553	130	185	185	11	337		
Adjusted Saturation Flow Rate (s), veh/h/ln	506	1863	1707	1774	1863	1856	1774	1863	1579	1194	1810		
Queue Service Time (gs), s	7.2	19.5	19.5	8.2	22.8	22.8	4.6	6.2	6.2	0.7	16.3		
Cycle Queue Clearance Time (gc), s	17.0	19.5	19.5	8.2	22.8	22.8	4.6	6.2	6.2	0.7	16.3		
Capacity (c), veh/h	191	1241	569	303	862	859	405	814	840	415	520		
Volume-to-Capacity Ratio (X)	0.228	0.678	0.680	0.754	0.644	0.644	0.322	0.227	0.220	0.026	0.649		
Available Capacity (ca), veh/h	191	1241	569	303	862	859	405	814	840	415	520		
Back of Queue (Q), veh/ln (50th percentile)	1.0	8.9	8.7	4.5	10.2	10.2	1.9	2.7	2.2	0.2	7.4		
Overflow Queue (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Queue Storage Ratio (RQ) (50th percentile)	0.04	0.25		0.19	0.40	0.40	0.11	0.15	0.12	0.01	0.47		
Uniform Delay (d1), s/veh	32.0	28.7	_	21.8	20.5	20.5	19.9	17.6	12.4	25.7	31.2		
Incremental Delay (d2), s/veh	2.8	3.0	6.4	9.2	3.7	3.7	0.2	0.1	0.0	0.0	2.2		
Initial Queue Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Control Delay (d), s/veh	34.8	31.7		31.0	24.2	24.2	20.1	17.6	12.5	25.7	33.5		
Level of Service (LOS)	C	С	D	С	С	С	C	В	В	С	С		
Approach Delay, s/veh / LOS	32.	9	С	25.4	7	С	16.4	 	В	33.2	<u>′</u>	С	
Intersection Delay, s/veh / LOS	ion Delay, s/veh / LOS 27.6									С			
Multimodal Results		EB W			WB	B NB				SB			
Pedestrian LOS Score / LOS	2.4		В	2.3	-	В	B 3.2		С			С	
Bicycle LOS Score / LOS	1.2	1.2 A		1.6		Α	1.3		Α	1.1		Α	

	HCS 2010) Signa	liz	ed Iı	nters	ection	ı Re	esu	Its S	umma	ary	I-0	6 PM P	eak Hou	ır
General Information	· · · ·							-		ion Info	v	on	- 1	1111	₽ <u> </u>
_ ,	HNTB				1				ıration,		0.25				K.
	TVF	-	•		May 4			+	еа Тур	e	Other	•	^^ →		<u>^</u> ∆_ ∑
Jurisdiction		Time				eak Hou	ır	PH			0.92		_ 🗟 🛶	W E 8	<u>←</u> ÷
	Buckeye Road				2020			An	alysis	Period	1> 17	:00	_ 🖹		√_ ÷
	2012-05-04_I-06_RecP													<u> ጎተ</u> ተ	
Project Description	Recommended Preferre	ed Alterna	ative	PM F	Peak (I-	06)	_	_						1 1 4 Y	P
Demand Information		$\overline{}$		EB		T	V	VB		T	NB			SB	
Approach Movement		L	Т	T	R	1		T	R	L	T	R		T	R
Demand (v), veh/h		10		980	130	140	_	140	10	70	550	220	10	650	10
Signal Information														K	人
Cycle, s 100.0	Reference Phase 2	2	H	₹ }		2 SA	2					_	♦ ,) , '	cfx 1
Offset, s 0	Reference Point E	nd Gree	en l	46.0	8.5	32.0	10.	.0	0.0	0.0		•	K		
Uncoordinated No	Simult. Gap E/W C	n Yello			3.5	3.5	-	.0	0.0	0.0			→		松
Force Mode Fixed	Simult. Gap N/S C	n Red		1.5	0.0	1.5	0.	.0	0.0	0.0		5	6	7	8
			D.	-	-D-T	14/5	. 1		'D T	NIDI	_	NET	0.01	_	ODT
Timer Results			BL	+	EBT	WB	L			NBL	-	NBT	SBI	-	SBT
Assigned Phase		-			2	-	\dashv			3		8	-		4
Case Number		_		_	6.0	_	-	6.0 51.0		1.0		4.0	_		6.3
Phase Duration, s	-	_		_	51.0	_		51.0 5.0		12.0		49.0			37.0
Change Period, (Y+Rc)		_		_	5.0	_	-			3.5	-	5.0	_	_	5.0
Max Allow Headway (M	<u> </u>	_		+	0.0	_		- 0).0	2.8		3.1	_		3.1
Queue Clearance Time		_		+	0.0	_	-			4.6	-	19.3	_	_	18.3
Green Extension Time	<i>(ge),</i> S	_		+	0.0	_	_	- 0	0.0	0.0		3.3		_	3.0
Phase Call Probability		_		+		_			_	1.00		1.00	_		1.00
Max Out Probability										0.14		0.01			0.11
Movement Group Res	ults			EB			W	'B			NB			SB	
Approach Movement		L	Т	Т	R	L	Т	· T	R	L	Т	R	L	Т	R
Assigned Movement		5	\top	2	12	1	6		16	3	8	18	7	4	14
Adjusted Flow Rate (v),	, veh/h	11	\top	821	386	152	62	6	624	76	440	397	11	360	358
Adjusted Saturation Flo		443	-	1863	1748	461	186	\rightarrow	1857	1774	1863	1681	654	1863	1853
Queue Service Time (g		2.0	_	15.3	15.3	30.7	27	_	27.3	2.6	17.3	17.3	1.2	16.3	16.3
Cycle Queue Clearance		29.4	-	15.3	15.3	46.0	27	\rightarrow	27.3	2.6	17.3	17.3	6.6	16.3	16.3
Capacity (c), veh/h		155	-	1714	804	214	85	_	854	338	820	740	246	596	593
Volume-to-Capacity Ra	tio (X)	0.07	_).479	0.480	0.712	0.7	_	0.731	0.225	0.536	0.537	0.044	0.603	0.604
Available Capacity (ca),	. ,	155	_	1714	804	214	85	_	854	338	820	740	246	596	593
Back of Queue (Q), veh		0.2	_	6.4	6.3	4.6	12	_	12.2	1.0	7.2	6.6	0.2	7.2	7.2
Overflow Queue (Q3), v		0.0	_	0.0	0.0	0.0	0.	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Queue Storage Ratio (I		0.0	-	0.18	0.17	0.19	0.4	\rightarrow	0.46	0.07	0.46	0.42	0.01	0.41	0.41
Uniform Delay (d1), s/ve		33.9	_	18.7	18.7	35.7	22		22.0	19.1	20.5	20.5	27.3	28.7	28.7
Incremental Delay (d2),		0.7	-	0.8	1.7	15.3	4.:	\rightarrow	4.5	0.1	0.4	0.4	0.0	1.2	1.2
Initial Queue Delay (d3)		0.0	_	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/veh		34.0	-	19.5	20.4	51.0	26	\rightarrow	26.5	19.3	20.9	21.0	27.4	29.9	29.9
Level of Service (LOS)		С		В	С	D	С	_	С	В	С	С	С	С	С
Approach Delay, s/veh	/LOS		9.9		В	29.1	1	(С	20.8		С	29.9		С
Intersection Delay, s/ve					24	1.8							С		
Multimodal Results				EB			W				NB			SB	
Pedestrian LOS Score			.8	\perp	С	2.8	\rightarrow		С	3.2		С	2.9	_	С
Bicycle LOS Score / LC	OS .	1	.2		Α	1.6			A	1.2		Α	1.1		Α

HCS 2010 Signalized Intersection Results Summary

I-07 PM Peak Hour

				T	
General Information				Intersection Info	ormation
Agency	HNTB			Duration, h	0.25
Analyst	TVF	Analysis Date	May 9, 2012	Area Type	Other
Jurisdiction		Time Period	PM Peak Hour	PHF	0.92
Intersection	Woodland Ave	Analysis Year	2020	Analysis Period	1> 17:00
File Name	2012-05-04_I-07_RecPrefA	lt_PMPeak-Wo	odland.xus		
Project Description	Recommended Preferred A	Iternative PM P	eak (I-07)		

Intersection		Woodland Ave		Analys	is Year	2020		A	Analysis	Period	1> 17	:00	52		T C
File Name		2012-05-04_I-07_R	ecPref/	\lt_PMP	eak-W	oodland	.xus							511	
Project Descrip	tion	Recommended Pref	ferred A	\lternati\	∕e PM I	Peak (I-0	07)						- 3	林 市 巴 安	= r
										_					
Demand Inform					EB		-	WB	_	-	NB		-	SB	
Approach Move				<u> </u>	Т	R	<u> </u>	T	R		T	R	<u> </u>	T	R
Demand (v), ve	h/h			10	960	240	10	1170	0 80	110	180	10	50	200	10
Signal Informa	4ian						_			_					
-		Deference Dhace	- 2			21/2									本
Cycle, s Offset, s	100.0	Reference Phase Reference Point	2 End		₹.	510	7					1	2	3	4
		Simult. Gap E/W		Green		39.0	0.0	0.0	0.0	0.0		1	_		.00
Uncoordinated Force Mode	No	(On	Yellow		3.5 1.5	0.0	0.0	0.0	0.0		_	Y	7	Ψ.
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	1.5	0.0	0.0	0.0	10.0	_	5	6	/	8
Timer Results				EBL		EBT	WB		WBT	NBI		NBT	SBI		SBT
Assigned Phase					-	2	VVD	_	6	INDI	-	8	ODI	-	4
Case Number						6.0			6.0			6.0			6.0
Phase Duration					_	56.0		_	56.0	_		44.0	_	_	44.0
Change Period,		9			_	5.0			5.0	_		5.0			5.0
Max Allow Head					_	0.0	_	_	0.0	_		3.1	_	_	3.1
Queue Clearan		·			_	0.0	_		0.0	_		13.6		_	8.8
Green Extensio					_	0.0	-	_	0.0	-		1.1	-	_	1.1
Phase Call Prol		(ge), 3		_	_	0.0	-		0.0	-		1.00	-	_	1.00
Max Out Probal	•				+		-	_		_		0.00			0.00
Wax Out 1 Tobal	Dility											0.00		_	0.00
Movement Gro	up Res	sults			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow F	Rate (v)	, veh/h		11	901	404	11	686	673	120	104	103	54	115	114
Adjusted Satura	ation Flo	ow Rate (s), veh/h/ln		399	1863	1669	420	1863	1820	1148	1863	1828	1171	1863	1831
Queue Service				2.2	15.6	15.6	1.7	28.6	28.7	7.6	3.6	3.6	3.1	4.0	4.0
Cycle Queue C	learanc	e Time <i>(gc)</i> , s		30.9	15.6	15.6	17.4	28.6	28.7	11.6	3.6	3.6	6.8	4.0	4.0
Capacity (c), ve	eh/h	-		161	1900	851	221	950	928	473	726	713	486	726	714
Volume-to-Capa	acity Ra	itio (X)		0.068	0.474	0.475	0.049	0.722	0.725	0.253	0.143	0.144	0.112	0.158	0.159
Available Capa	city (ca),	, veh/h		161	1900	851	221	950	928	473	726	713	486	726	714
Back of Queue	(Q), vel	n/ln (50th percentile)		0.2	6.4	5.9	0.2	11.9	11.7	2.0	1.5	1.5	0.9	1.7	1.7
Overflow Queue	e <i>(</i> Q3), v	/eh/ln		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Queue Storage	Ratio (RQ) (50th percentile))	0.01	0.18	0.16	0.01	0.47	0.46	0.14	0.22	0.22	0.11	0.25	0.24
Uniform Delay				31.1	15.8	15.8	21.4	19.0	19.0	23.6	19.7	19.7	21.9	19.8	19.8
Incremental De	lay (d2),	s/veh		0.7	0.7	1.5	0.2	2.1	2.2	0.1	0.0	0.0	0.0	0.0	0.0
Initial Queue De	elay (d3,), s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (31.7	16.5	17.4	21.6	21.1	21.2	23.7	19.7	19.7	21.9	19.9	19.9
Level of Service	e (LOS)			С	В	В	С	С	С	С	В	В	С	В	В
Approach Delay				16.9		В	21.1		С	21.2	2	С	20.3	3	С
Intersection De						19).4						В		
Multimodal Re	sults				EB			WB			NB			SB	
Pedestrian LOS	Score	/ LOS		2.8		С	2.8		С	3.2		С	2.9		С
Bicycle LOS Sc	/1.0	26		1.2		Α	1.6		Α	0.8		Α	0.7		Α

	HCS 2	010 S	ignali	zed I	nters	ectior	n Res	ults S	umm	ary		I-08 PN	1 Peak H	lour
General Information								Intersec	tion Inf	ormatic	\n	7	4221	s t
	HNTB						\rightarrow	Duration		0.25)II		111	
Agency Analyst	TVF		Analys	ia Data	May 1	F 2012								S.
_	IVF					5, 2012	_	Area Typ	e	Other			w F	<u>~</u>
Jurisdiction	E 00 10: 1		Time F			eak Hou	_	PHF	D : 1	0.92				7
Intersection	E. 93rd Street			sis Year				Analysis	Period	1> 17	:00	- 5		_ c
File Name	2012-05-04_I-08_R						ght.xus	<u> </u>					ጎተሾ	
Project Description	Recommended Pre	ferred A	Alternati	ve PM F	Peak (I-	08)	_	_	_	_	_		***	2.0
Demand Information				EB		T	WE	3	T	NB			SB	
Approach Movement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), veh/h			230	780	10	130	930	10	20	360	180	10	430	320
Cinnal Information				1		-1 11:	-		_					
Signal Information Cycle, s 100.0	Reference Phase	2		-3	7	= 124/3s						A .		本
Offset, s 0	Reference Point	End		-3	-	1	6				1	Y 2	3	4
Uncoordinated No	Simult. Gap E/W	On	Green		40.0	36.0	0.0	0.0	0.0			_		. 2
	<u> </u>	On	Yellow	-	3.5 1.5	3.5 1.5	0.0	0.0	0.0		^	Y	_	Ψ.
Force Mode Fixed	Simult. Gap N/S	On	Red	0.0	1.5	1.5	0.0	0.0	[0.0		5	6	7	8
Timer Results			EBI		EBT	WB	L	WBT	NB	L	NBT	SBI		SBT
Assigned Phase			5		2			6		\neg	8		\neg	4
Case Number			1.0		3.0			6.3			5.0			5.0
Phase Duration, s			14.0)	59.0			45.0			41.0		$\neg \neg$	41.0
Change Period, (Y+Rc)), s		3.5		5.0			5.0			5.0			5.0
Max Allow Headway (M	<i>ЛАН)</i> , s		2.8		0.0			0.0			3.1		$\neg \neg$	3.1
Queue Clearance Time	e (gs), s		9.8								25.5			23.4
Green Extension Time	<i>(g_e),</i> s		0.0		0.0			0.0			2.5		$\neg \neg$	2.7
Phase Call Probability			1.00)							1.00			1.00
Max Out Probability			1.00)							0.18			0.11
Mayamant Crayn Bas				- ED			WD			ND			CD	
Movement Group Res Approach Movement	suits		-	EB T	R		WB T	T D	-	NB	D		SB	D
Assigned Movement			5	2	12	1	6	16	1 L 3	8 8	18	7	T 4	R 14
Adjusted Flow Rate (v)) vab/b		250	848		141	512	510	22	391	196	11	467	348
Adjusted Saturation Flo			1774	1773	11 1579	647	1863		922	1863	1579	989	1863	1579
Queue Service Time (g			7.8	14.5	0.3	16.9	22.7	22.7	2.1	17.0	9.1	0.9	21.4	18.1
Cycle Queue Clearance	· ·		7.8	14.5	0.3	17.3	22.7	22.7	23.5	17.0	9.1	17.9	21.4	18.1
Capacity (c), veh/h	2 7 (9-7), 2		353	1915	852	328	745	742	206	671	568	260	671	568
Volume-to-Capacity Ra	atio (X)		0.708	0.443	0.013	0.431	0.687	_	0.105	0.584	0.344	0.042	0.697	0.612
Available Capacity (ca)	• •		353	1915	852	328	745	742	206	671	568	260	671	568
Back of Queue (Q), vel)	3.4	5.6	0.1	2.8	10.5	10.5	0.5	7.5	3.3	0.2	9.8	6.9
Overflow Queue (Q3), v	veh/ln		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Queue Storage Ratio (RQ) (50th percentile)	0.14	0.19	0.00	0.26	0.53	0.53	0.03	0.51	0.23	0.01	0.37	1.74
Uniform Delay (d1), s/v	eh		18.7	13.9	10.7	23.4	24.8	24.8	37.4	25.9	23.4	33.2	27.3	26.3
Incremental Delay (d2),			4.7	0.6	0.0	3.8	4.7	4.7	0.1	0.9	0.1	0.0	2.7	1.4
Initial Queue Delay (d3)			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/vel			23.4	14.5	10.7	27.1	29.5	29.6	37.5	26.8	23.5	33.2	30.0	27.7
Level of Service (LOS)			С	В	В	С	С	С	D	С	С	С	С	С
Approach Delay, s/veh			16.5	5	В	29.3	3	С	26.	1	С	29.1		С
Intersection Delay, s/ve	eh / LOS				24	4.9						С		
Multimodal Results				EB			WB			NB			SB	

Pedestrian LOS Score / LOS

Bicycle LOS Score / LOS

В

Α

2.8

1.5

С

Α

2.4

1.4

2.4

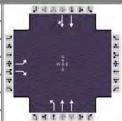
1.4

В

Α

С

Α


2.9

1.9

HCS 2010 Signalized Intersection Results Summary

I-09 PM Peak Hour

General Information				Intersection Info	rmation
Agency	HNTB			Duration, h	0.25
Analyst	TVF	Analysis Date	May 9, 2012	Area Type	Other
Jurisdiction		Time Period	PM Peak Hour	PHF	0.92
Intersection	Quincy Ave	Analysis Year	2020	Analysis Period	1> 17:00
File Name	2012-05-04_I-09_PMPeak	-Quincy-Left and	Thru-Right.xus		
Project Description	Recommended Preferred	Alternative PM P	eak (I-09)		

Intersection		Quincy Ave		Anaiys	is year	r 2020		A	naiysis	Perioa	1> 17	:00	8		
File Name		2012-05-04_I-09_P	MPeak	-Quincy-	Left ar	nd Thru-l	Right.xu	S						5.1.1	
Project Descrip	tion	Recommended Pre	ferred A	Alternativ	e PM	Peak (I-0	09)						3	11127	2 6
Demand Inforr	mation				EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), ve	eh/h			10		10				90	870			1050	20
Signal Informa	ation				Ų		T	T	7	7					
Cycle, s	100.0	Reference Phase	2	1	E.	2							4		~
Offset, s	0	Reference Point	End	Crass	52.0	30.0		100	0.0	0.0		1	1.2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Green Yellow		38.0	0.0	0.0	0.0	0.0		2	1		
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	1.5	0.0	0.0	0.0	0.0		5	6	7	8
Times Describe				EDI	-	EDT	WDI		WDT	ND		NDT	0.0		ODT
Timer Results				EBL	-	EBT	WBI	-	WBT	NBI	_	NBT	SB		SBT
Assigned Phas	e			_	_	4		_			_	2	-	-	6
Case Number				_	-	9.0		-			-	6.0	-	_	8.0
Phase Duration		\ -		_	_	43.0		_		_		57.0	-		57.0
Change Period				_	-	5.0		-		_	-	5.0	-	-	5.0
Max Allow Head		, .		_	_	3.2	_	_			_	0.0	-	-	0.0
Queue Clearan				_	-	2.4	_	-		_	-		-	-	
Green Extension		<i>(ge),</i> S		_	_	0.0	_	_		_	-	0.0	-	-	0.0
Phase Call Pro				_	-	1.00	_	-		_	-		-	-	
Max Out Proba	bility					0.00							4	_	
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	T	R	L	T	R	L	T	R
Assigned Move				7		14				5	2			6	16
Adjusted Flow I				11		11				98	946			583	580
		ow Rate (s), veh/h/ln		1774		1579				481	1773			1863	1850
Queue Service				0.4		0.4				17.9	17.5			21.9	21.9
Cycle Queue C		e Time (gc), s		0.4		0.4				39.7	17.5			21.9	21.9
Capacity (c), ve				674		600				217	1844			969	962
Volume-to-Cap	acity Ra	atio (X)		0.016		0.018				0.451	0.513			0.602	0.602
Available Capa	city (ca)	, veh/h		674		600				217	1844			969	962
		h/In (50th percentile)		0.2		0.2				2.3	6.8			9.4	9.4
Overflow Queu	. ,,			0.0		0.0				0.0	0.0			0.0	0.0
	•	RQ) (50th percentile)	0.02		0.02				0.10	0.24			0.48	0.48
Uniform Delay				19.3		19.4				30.7	15.7			16.8	16.8
Incremental De				0.0		0.0				5.2	0.8			2.8	2.8
Initial Queue De		, .		0.0		0.0				0.0	0.0			0.0	0.0
Control Delay (19.3		19.4				35.8	16.5			19.5	19.6
Level of Service				В		В				D	В			В	В
Approach Delay	-			19.3		В	0.0			18.3	3	В	19.	3	В
Intersection De	lay, s/ve	eh / LOS				19	9.0						В		
Multimodal Re		/1.00			EB			WB			NB	_		SB	
Pedestrian LOS	Score	/ LOS		2.9	_	С	2.7	\perp	В	0.7		A	2.3	<u>- </u>	В

Bicycle LOS Score / LOS

1.3

1.4

		HCS 20	010 S	ignali	zed I	nterse	ection	Res	sults S	umm	ary	I-1	0 PM Pe	eak Hou	r
General Inform	nation								Intersec	tion Inf	ormatic	\n		4 J 4 J	ь ц
Agency	iation	HNTB						\rightarrow	Duration		0.25)II	┨	417	
		TVF		Analye	io Dote	May 9	2012		Area Typ		Other		4		L A
Analyst Jurisdiction		IVF		Time F	sis Date		eak Hou	_	PHF) e	0.92			, N w1=	<u>₹</u>
Intersection		Codor Avenue					зак пос			Dariad	1> 17	.00	- - 		√— ← ₩
		Cedar Avenue		Analys	sis Year	2020			Analysis	Period	1> 17	.00			
File Name	4	D	Cl A	14 41	DM	D = = I = /I =	1.0\							5 1 1 1	
Project Descrip	tion	Recommended Pre	rerrea A	liternativ	/e PM I	Peak (I	10)							TIPT	r n
Demand Inform	nation				EB			WE	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), ve	h/h			90	250	40	140	170	70	20	500	310	60	840	50
Signal Informa	tion														
Cycle, s	100.0	Reference Phase	2			_ }	Ħ.2 }						KÎZ		Z
Offset, s	0	Reference Point	End				R '					1	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Green		8.5	34.0	0.0	0.0	0.0	_				4
Force Mode	Fixed	Simult. Gap N/S	On	Yellow Red	1.5	3.5 0.0	3.5 1.5	0.0	0.0	0.0		5		7	Y .
Force Mode	rixeu	Simult. Gap N/S	Oli	Reu	1.5	10.0	1.3	0.0	0.0	0.0 0.0		9	6	,	0
Timer Results				EBI	-	EBT	WB	L	WBT	NB	L	NBT	SBI	_	SBT
Assigned Phase	е					4	3		8	NBL		2			6
Case Number						6.3	1.0		4.0			6.0			6.0
Phase Duration	, S					39.0	12.0		51.0			49.0			49.0
Change Period,	, (Y+Rc)), s				5.0	3.5		5.0			5.0			5.0
Max Allow Head	dway <i>(N</i>	<i>//AH)</i> , s				3.1	2.8		3.1			0.0			0.0
Queue Clearan	ce Time	e (gs), s				8.4	7.2		11.3						
Green Extensio	n Time	<i>(g_e),</i> s				1.3	0.0		1.3			0.0			0.0
Phase Call Prol	bability					1.00	1.00)	1.00						
Max Out Proba	bility				\perp	0.00	1.00)	0.00						
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move				L	Т	R		Т	R	L	Т	R	L	T	R
Assigned Move				7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow F		. veh/h		98	160	155	152	261		22	543	337	65	489	479
	• • •	ow Rate (s), veh/h/ln		1114	1863	1773	1774	1770		579	1863	1579	628	1863	1825
Queue Service				6.4	6.2	6.3	5.2	9.3		3.0	9.6	15.2	8.3	19.9	19.9
Cycle Queue C	learanc	e Time (gc), s		6.4	6.2	6.3	5.2	9.3		22.9	9.6	15.2	23.5	19.9	19.9
Capacity (c), ve	h/h			451	633	603	516	814		211	1639	695	253	820	803
Volume-to-Capa	acity Ra	atio (X)		0.217	0.252	0.258	0.295	0.320)	0.103	0.332	0.485	0.258	0.596	0.596
Available Capa	city (Ca)	, veh/h		451	633	603	516	814		211	1639	695	253	820	803
Back of Queue	(Q), vel	h/ln (50th percentile)		1.6	2.7	2.6	2.1	3.6		0.4	4.0	5.7	1.3	8.6	8.5
Overflow Queue	e <i>(</i> Q ₃), v	/eh/ln		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
		RQ) (50th percentile)	0.17	0.27	0.26	0.14	0.25		0.02	0.17	0.24	0.06	0.42	0.41
Uniform Delay	(d1), s/v	eh		23.9	23.8	23.9	17.3	17.1		29.9	18.4	19.9	28.3	21.3	21.3
Incremental De	lay (d2),	, s/veh		0.1	0.1	0.1	0.1	0.1		0.7	0.4	1.8	1.3	1.7	1.7
Initial Queue De	elay (d _{3,}), s/veh		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/vel	h		24.0	23.9	24.0	17.4	17.2		30.6	18.8	21.7	29.6	22.9	23.0
Level of Service	(LOS)			С	С	С	В	В		С	В	С	С	С	С
Approach Delay				23.9		С	17.3	3	В	20.1	1	С	23.4	1	С
Intersection De	lay, s/ve	eh / LOS				21	1.5						С		
Multimodal Re	eulte				EB			WB			NB			SB	
Pedestrian LOS		/108		2.9	LD	С	3.1		С	2.7	-	В	2.4		В
Bicycle LOS Sc				0.8		A	1.2	-	A	1.0		A	1.3		A
Dicycle LOS SC	OIG / LC	70		0.6			1.2		Α	1.0		^	1.3		

		HCS 20	010 S	ignali	zed	Interse	ection	Res	ults S	umm	ary	I-1	1 PM P	eak Hou	r
General Inform	nation	X						\rightarrow	ntersec		v	on	_	1 1 1	Ŀ Ų
Agency		HNTB]	Duration,	h	0.25			* * *	L.
Analyst		TVF		Analys	sis Dat	e May 9	, 2012	_	Area Typ	е	Other	-	^^		* _ }_
Jurisdiction				Time F	Period	PM Pe	eak Hou		PHF		0.92			w	
Intersection		Carnegie Avenue		Analys	sis Yea	r 2020		/	Analysis	Period	1> 17	':00	_		€
File Name														<u>ጎተተ</u> ኮ	
Project Descrip	tion	Recommended Pre	ferred A	lternativ	ve PM	Peak (I	11)	_	_	_	_	_	1	4 † 4 Y	ħ
Demand Inform	nation				EB			WB	3		NB			SB	
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), ve				70	139	0 10	150	770	60	50	580	50	80	750	40
Signal Informa					1		∃ a ₹	4					-4-	_	_
Cycle, s	100.0	Reference Phase	2		1 51	<u>ام</u>	TH '					1	\mathbf{Y}_{2}	3	-(₄
Offset, s	0	Reference Point	End	Green			46.2	0.0	0.0	0.0					K
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.5	3.5	3.5	0.0	0.0	0.0					₹
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	0.0	1.5	0.0	0.0	0.0		5	6	7	8
Times Beauty				EDI		EDT	WD	. 1	WDT	NDI		NDT	ODI		ODT
Timer Results Assigned Phase				EBI	-	EBT 4	WB 3		WBT 8	NBL		NBT 2	SBI	-	SBT 6
Case Number					_	6.3	1.0		3.0			6.0			6.0
Phase Duration	S					51.2	11.0	_	62.2			37.8			37.8
Change Period,)				5.0	3.5		5.0			5.0			5.0
Max Allow Head						3.1	2.8		3.1			0.0		_	0.0
Queue Clearan						39.3	6.5		15.2			0.0		_	0.0
Green Extensio					_	4.0	0.0		7.8		_	0.0		_	0.0
Phase Call Prob		(ge), 3				1.00	1.00		1.00			0.0		_	0.0
Max Out Probal						0.70	1.00		0.03					_	
max out room	·····					0.7 0			0.00						
Movement Gro	up Res	sults			EB			WB			NB			SB	
Approach Move	ment			L		R	L	T	R	L	T	R	L	Т	R
Assigned Move				7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow F				76	762	760	163	837	65	54	461	224	87	433	425
		ow Rate (s), veh/h/ln		654	1863	_	1774	1773	1579	641	1863	1785	754	1863	1829
Queue Service		•		7.4	37.2		4.5	13.2	1.8	8.1	9.5	9.6	10.0	20.4	20.4
Cycle Queue C		e time (gc), s		9.6	37.2	_	4.5	13.2	1.8	28.5	9.5	9.6	19.6	20.4	20.4
Capacity (c), ve				360	861	858	236	2029		152	1222	585	247	611	600
Volume-to-Capa	-			0.212	0.885	_	0.692	0.413	_	0.358	0.377	0.382	0.353	0.709	0.709
Available Capa		•		360	861	858	236	2029		152	1222	585	247	611	600
		h/ln (50th percentile)		1.1	17.8	_	2.1	4.8	0.6	1.5	4.2	4.3	2.0	9.6	9.4
Overflow Queue		ren/in RQ) (50th percentile)	0.0	0.0	0.0	0.0	0.0	0.02	0.0	0.0	0.0	0.0	0.0	0.0
Uniform Delay)	17.8	24.5		21.6	12.0	9.6	41.9	25.8	25.8	33.4	29.4	29.4
Incremental De				0.1	10.5	_	7.1	0.0	0.0	5.7	0.8	1.7	2.6	4.6	4.7
Initial Queue De				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (17.9	35.0	_	28.7	12.0	9.6	47.6	26.6	27.5	36.0	34.0	34.1
Level of Service	*			В	D	D	C	B	A	D D	C C	C C	D	C	C
Approach Delay				34.2		С	14.4		В	28.4		С	34.2		С
Intersection Del							3.4						С		
Multimodal Re					EB			WB			NB			SB	
Pedestrian LOS				2.9	-	С	3.1	_	С	2.9	_	С	2.8		С
Bicycle LOS Sc	ore / LC	OS		1.8		Α	1.4		Α	0.9		Α	1.3		Α

	HCS 2	010 S	ignali	zed	Inters	ection	n Res	sults S	umm	ary	l-1	2 PM Pe	eak Hou	r
On and Information								l (dia a lad			1 1	4 J & I	u III
General Information	INITO						_	Intersec		v	on	- 1	41,	<i>p</i> 4
<u> </u>	HNTB		A I	:- D-1	- NA C	0040		Duration		0.25				L
	TVF		-		e May 9		_	Area Typ	oe	Other			N 1 -	E
Jurisdiction	- 1: 1 4		Time F			eak Hou		PHF	<u> </u>	0.92			8 W † E	₽ •
	Euclid Avenue		Analys	sis Yea	r 2020			Analysis	Period	1> 17	:00			
File Name					-	\							ጎተተኛ	
Project Description F	Recommended Pre	ferred A	lternativ	/e PM	Peak (I	12)							4 1 4 7	ትሰ
Demand Information				EB			WE	3		NB			SB	
Approach Movement			L	Т	R	L	Т	R	L	Т	R	L	T	R
Demand (v), veh/h			290	320	90	290	370	20	90	530	110	40	440	230
Signal Information			1	1 11:			:							
	Reference Phase	2	-	1	ر حا	⊣ . ₹	Ħ					KŤZ	<u> </u>	
	Reference Point	End	ł	<u>"</u> it	וין	R					1	2		4
			Green		23.0	28.0	0.0		0.0				_	<u> </u>
	Simult. Gap E/W	On	Yellow	-	5.0	3.5	0.0		0.0	_		<u> </u>	- ∕' _	
Force Mode Fixed	Simult. Gap N/S	On	Red	1.5	0.0	6.5	0.0	0.0	0.0		5	6	7	8
Timer Results			EBI	_	EBT	WB	L	WBT	NB	L	NBT	SBI	_	SBT
Assigned Phase			7		4	3		8			2			6
Case Number			2.0		4.0	2.0		4.0			5.0			6.0
Phase Duration, s			28.0)	38.0	28.0)	4.0 38.0			34.0			34.0
Change Period, (Y+Rc),	S		5.0		10.0	5.0		38.0			5.0			5.0
Max Allow Headway (MA	<i>AH)</i> , s		2.8		3.2	2.8		3.2			0.0			0.0
Queue Clearance Time	(gs), s		18.6	5	25.8	18.6	3	23.5						
Green Extension Time (g	g _e), s		0.2		0.6	0.2		1.0			0.0			0.0
Phase Call Probability	-		1.00		1.00	1.00)	1.00						
Max Out Probability			0.26	5	1.00	0.26	6	0.62						
Movement Group Resu	ılte			EB			WB			NB			SB	
Approach Movement			L	T	R	L	T	R	L	T	R		T	R
Assigned Movement			7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow Rate (v),	veh/h		315	446	+	315	424	10	98	576	120	43	478	250
Adjusted Saturation Flow			1774	1792		1774	1846		724	1773	1579	834	1863	1579
Queue Service Time (gs,			16.6	23.8		16.6	21.5		4.5	13.8	3.9	4.7	24.5	13.4
Cycle Queue Clearance			16.6	23.8		16.6	21.5		29.0	13.8	3.9	18.4	24.5	13.4
Capacity (c), veh/h	10 7.		408	502	1	408	517		104	1029	821	199	540	458
Volume-to-Capacity Rati	io <i>(X)</i>		0.773	0.888	3	0.773	0.820)	0.937	0.560	0.146	0.219	0.885	0.546
Available Capacity (ca), v			408	502	1	408	517	1	104	1029	821	199	540	458
Back of Queue (Q), veh/	/In (50th percentile))	8.1	12.6		8.1	10.9		4.3	6.0	1.4	1.1	13.3	5.5
Overflow Queue (Q3), ve	eh/ln		0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Queue Storage Ratio (R	(50th percentile)	0.41	0.64		0.39	0.53		0.18	0.25	0.06	0.06	0.75	0.31
Uniform Delay (d1), s/vel			36.1	34.5		36.1	33.6		49.3	30.1	12.5	37.9	33.9	29.9
Incremental Delay (d2), s			8.1	16.9		8.1	9.5		65.8	1.9	0.3	2.3	17.3	4.2
Initial Queue Delay (d3),			0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/veh			44.1	51.4		44.1	43.2		115.0	32.0	12.8	40.2	51.2	34.1
Level of Service (LOS)			D	D		D	D		F	С	В	D	D	С
Approach Delay, s/veh /			48.4		D	43.6	6	D	39.3	3	D	45.1		D
Intersection Delay, s/veh	n/LOS				44	1.0						D		
Multimodal Results				EB			WB			NB			SB	
Pedestrian LOS Score /	LOS		3.0		С	2.8				В	2.3		В	
Bicycle LOS Score / LOS			1.7	_	A	1.7	_	Α	1.1	_	Α	1.1	_	Α

		HCS 2	010 S	ignali	zed I	nterse	ection	Res	ults S	umm	ary	I-1	3 PM P	eak Hou	r
									• .						
General Inform	nation	T							Intersec		11	on		11741	₽ <u>L</u>
Agency		HNTB		1					Duration,		0.25				
Analyst		TVF		-		May 9		_	Area Typ	е	Other	•	^		7 1 1
Jurisdiction				Time F			eak Hou		PHF		0.92			w ‡ E 8	← <u>⊕</u>
Intersection		Chester Avenue		Analys	sis Year	2020			Analysis	Period	1> 17	:00			<u>*</u>
File Name														<u>ጎተ</u> ት	
Project Descrip	tion	Recommended Pre	ferred A	lternativ	ve (I 13)							The state of the s	4 † • Y	PM
Demand Inform	nation				EB		1	WE	3		NB		T	SB	
Approach Move				L	Т	R		Т	R		Т	R		T	R
Demand (v), ve				90	1400		10	500	_	50	730	90	40	560	100
Signal Informa			r		1	2	9 6	4							_
Cycle, s	100.0	Reference Phase	2		<u>5</u> 1	¤₩	Ħ.					1	Y	3	→ ₄
Offset, s	0	Reference Point	End	Green		6.5	36.7	0.0	0.0	0.0					K
Uncoordinated	No	Simult. Gap E/W	On	Yellow		3.5	3.5	0.0	0.0	0.0				→	→
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	0.0	1.5	0.0	0.0	0.0		5	6	7	8
Timer Results				- EDI		EDT	WD		WBT	NDI		NDT	CDI		CDT
Assigned Phase				EBI 7	-	EBT 4	WB		8	NBI	-	NBT 2	SBI	-	SBT 6
Case Number				1.0		4.0		+	6.3			6.0			6.0
Phase Duration	n, S			10.0	_	51.7			41.7			48.3		\neg	48.3
Change Period), s		3.5	_	5.0			5.0			5.0			5.0
Max Allow Head				2.8	_	3.1		_	3.1			0.0			0.0
Queue Clearan				5.2		24.6			17.4			0.0			0.0
Green Extension				0.0	_	6.0			5.8			0.0		_	0.0
Phase Call Prol		(90), 0		1.00		1.00			1.00			0.0		-	0.0
Max Out Proba				1.00	_	0.10		\top	0.14					$\overline{}$	
Movement Gro		sults			EB		<u> </u>	WB	T -		NB			SB	
Approach Move				L	Т	R	ᆫ	Т	R	L	Т	R	L	Т	R
Assigned Move				7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow I				98	1108	533	11	290	286	54	454	437	43	368	350
		ow Rate (s), veh/h/ln		1774	1863	1790	304	1863		731	1863	1791	621	1863	1764
Queue Service Cycle Queue C		• • • • • • • • • • • • • • • • • • • •		3.2	22.6 22.6	22.6	2.8	11.7 11.7	11.7	5.7 19.7	18.3 18.3	18.3 18.3	5.6 23.9	14.0 14.0	14.0 14.0
Capacity (c), ve		e fille (<i>gc)</i> , s		395	1740	836	145	684	670	286	807	775	227	807	764
Volume-to-Capa		atio (X)		0.247	0.637	0.637	0.075	0.425		0.190	0.563	0.564	0.191	0.456	0.458
Available Capa		. ,		395	1740	836	145	684	670	286	807	775	227	807	764
		h/In (50th percentile)		1.3	9.4	9.2	0.2	5.0	4.9	1.1	8.0	7.7	0.9	6.2	5.9
Overflow Queue				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		RQ) (50th percentile)	0.05	0.40	0.39	0.01	0.18	0.17	0.05	0.41	0.39	0.06	0.39	0.38
Uniform Delay				17.0	20.2	20.2	29.9	23.7	23.8	27.0	21.3	21.3	30.2	20.0	20.0
Incremental De	lay <i>(d</i> 2),	, s/veh		0.1	0.6	1.3	0.1	0.2	0.2	1.0	2.0	2.1	1.9	1.9	2.0
Initial Queue De				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/vel	h		17.1	20.8	21.5	29.9	23.9	23.9	28.1	23.3	23.4	32.1	21.9	22.0
Level of Service				В	С	С	С	С	С	С	С	С	С	С	С
Approach Delay	y, s/veh	/LOS		20.8	3	С	24.0)	С	23.6	6	С	22.5	5	С
Intersection De	lay, s/ve	eh / LOS				22	2.3						С		
Multimodal Re	eulte				EB			WB		NB				SB	
Pedestrian LOS		/108		2.8		С	2.8	-	С			С	2.9		С
Bicycle LOS So				1.4	-	A	1.0		A	1.3	_	A	1.1		A
Dicycle LOS SC	JOIG / LC	,,		1.4			1.0		^	1.3		\sim	1.1		$\overline{}$

Appendix F: Synchro Analysis Results - Signalized Intersections (2020 AM Peak Hour)

Synchro Analysis – AM Peak Hour 2020 Build Condition

The roadway network established from HCS analyses was modeled using Synchro to determine operations with optimized signal coordination along the corridor for the AM and PM peak hours. However, it should be noted that within the University Circle Area several of the corridors intersected by the proposed boulevard also have coordinated signal systems (i.e. Carnegie Avenue, Euclid Avenue, Chester Avenue, etc.). These corridors accommodate the predominant east-west traffic movements within University Circle. Therefore, the optimized timings developed as part of this Synchro analysis will have to be further evaluated based on city-wide signal coordination goals and further field adjusted to achieve optimal system performance.

Synchro results for the proposed boulevard indicate intersection levels of service range from LOS A to LOS C during the AM peak hour. The 79th Street and Euclid Avenue intersections each have one movement that operates below acceptable levels.

At the E. 79th Street, the southbound through lane operates at a LOS E with a delay of 57.1 seconds during the AM peak hour. The phasing used in the analysis for the AM peak hour is controlled by the phasing required for the PM to operate with acceptable conditions which includes a protected northbound phase. The protected northbound is not required during the AM peak hour. Based on the low southbound opposing volumes (180 vehicles in one shared lane), long split, low v/c ratio of 0.68, and acceptable results from the HCS analyses, further changes to this intersection are not recommended.

At Euclid Avenue, the eastbound left turn movement operates at a LOS E with a delay of 62.9 seconds and a v/c ratio of 0.70. Euclid Avenue currently operates as a BRT corridor and creates a constraint when designing E. 105th Street to meet the operational requirements of the project. Synchro has limitations in modeling this intersection. To accommodate the protected bus movements, a "dummy" phase of 6.5 seconds was added to the eastbound and westbound left turn movements. This may have resulted in a conservative result. The hourly volume for this movement is 160 vehicles. The eastbound left turn lane length is designed to remain as it currently exists at 150 feet. Due to the BRT condition, it cannot be extended without excessive impacts to the intersection area. There are several east-west roadways that intersect with E. 105th Street and provide alternate routes Given the limitations of the analysis methodology, the overall operation of the intersection (LOS D), the low v/c ratio (0.70), and the geometric constraints, further changes to this intersection are not recommended.

Synchro results for the AM peak hour are included within this Appendix.

	•	•	†	~	>	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ኘ	7	†		ሻ	^
Volume (vph)	260	200	1030	320	120	250
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	440	0	1700	0	400	1700
Storage Lanes	440	1		0	400	
	25				25	
Taper Length (ft)		25	0.05	25		0.05
Lane Util. Factor	1.00	1.00	0.95	0.95	1.00	0.95
Frt	0.050	0.850	0.964		0.050	
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1711	1531	3298	0	1711	3421
Flt Permitted	0.950				0.091	
Satd. Flow (perm)	1711	1531	3298	0	164	3421
Right Turn on Red		No		No		
Satd. Flow (RTOR)						
Link Speed (mph)	25		35			35
Link Distance (ft)	714		708			1413
Travel Time (s)	19.5		13.8			27.5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	283	217	1120	348	130	272
Shared Lane Traffic (%)	203	217	1120	340	130	212
Lane Group Flow (vph)	283	217	1468	0	130	272
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	22		11			11
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1	1	1		1	1
Detector Template	Left	Right	Thru		Left	Thru
Leading Detector (ft)	35	35	35		35	35
Trailing Detector (ft)	0	0	0		0	0
Detector 1 Position(ft)	0	0	0		0	0
	35	35	35		35	35
Detector 1 Size(ft)						
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex
Detector 1 Channel	2.2	2.2	2.2		2.2	2.2
Detector 1 Extend (s)	0.0	0.0	0.0		0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0		0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0		0.0	0.0
Turn Type		pm+ov			pm+pt	
Protected Phases	8	1	2		1	6
Permitted Phases		8			6	
Detector Phase	8	1	2		1	6
Switch Phase						
Minimum Initial (s)	6.0	6.0	6.0		6.0	6.0
Minimum Split (s)	31.0	11.0	29.0		11.0	11.0
Total Split (s)	39.0	16.0	65.0	0.0	16.0	81.0
	32.5%	13.3%	54.2%	0.0%		67.5%
Total Split (%)	ა2.5%	13.5%	J4.Z%	U.U%	13.3%	07.5%

	€	•	†		-	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Maximum Green (s)	34.0	11.0	60.0		11.0	76.0
Yellow Time (s)	3.5	3.5	3.5		3.5	3.5
All-Red Time (s)	1.5	1.5	1.5		1.5	1.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	4.0	5.0	5.0
Lead/Lag		Lead	Lag		Lead	
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0
Recall Mode	None	None	C-Max		None	C-Max
Walk Time (s)	7.0		7.0			
Flash Dont Walk (s)	19.0		17.0			
Pedestrian Calls (#/hr)	8		8			
Act Effct Green (s)	25.1	39.5	70.5		84.9	84.9
Actuated g/C Ratio	0.21	0.33	0.59		0.71	0.71
v/c Ratio	0.79	0.43	0.76		0.55	0.11
Control Delay	49.0	36.4	23.3		18.5	6.4
Queue Delay	0.0	0.0	0.0		0.0	0.0
Total Delay	49.0	36.4	23.3		18.5	6.4
LOS	D	D	С		В	Α
Approach Delay	43.5		23.3			10.3
Approach LOS	D		С			В
Intersection Summary						
Area Type:	Other					
Cycle Length: 120						

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 105 (88%), Referenced to phase 2:NBT and 6:SBTL, Start of Yellow

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.79

Intersection Signal Delay: 25.4 Intersection LOS: C
Intersection Capacity Utilization 72.2% ICU Level of Service C

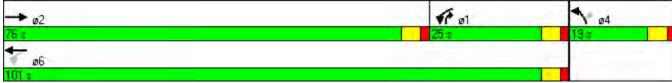
Analysis Period (min) 15

	→	•	•	•	1	~
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	† †		ሻ	^	ሻሻ	7
Volume (vph)	1800	260	200	1300	220	220
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	1,700	0	625	1,00	300	0
Storage Lanes		0	1		2	1
Taper Length (ft)		25	25		25	25
Lane Util. Factor	0.91	0.91	1.00	0.95	0.97	1.00
Frt	0.981	0.71	1.00	0.70	0.77	0.850
Flt Protected	0.701		0.950		0.950	0.000
Satd. Flow (prot)	4822	0	1711	3421	3319	1531
Flt Permitted	TUZZ	U	0.052	J+Z I	0.950	1331
Satd. Flow (perm)	4822	0	94	3421	3319	1531
Right Turn on Red	4022	No	74	J4Z I	3317	No
Satd. Flow (RTOR)		NO				INO
, ,	25			25)E	
Link Speed (mph)	35			35	25	
Link Distance (ft)	1145			1919	714	
Travel Time (s)	22.3	0.00	0.00	37.4	19.5	0.00
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	1957	283	217	1413	239	239
Shared Lane Traffic (%)	00:5		0.4-		000	0.5.5
Lane Group Flow (vph)	2240	0	217	1413	239	239
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	11			11	22	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed (mph)		9	15		15	9
Number of Detectors	1		1	1	1	1
Detector Template	Thru		Left	Thru	Left	Right
Leading Detector (ft)	35		35	35	35	35
Trailing Detector (ft)	0		0	0	0	0
Detector 1 Position(ft)	0		0	0	0	0
Detector 1 Size(ft)	35		35	35	35	35
Detector 1 Type	CI+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex
31	CI+EX		CI+EX	CI+EX	CI+EX	CI+EX
Detector 1 Channel	0.0		0.0	0.0	0.0	0.0
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	0.0
Turn Type			pm+pt			pm+ov
Protected Phases	2		1	6	4	1
Permitted Phases			6			4
Detector Phase	2		1	6	4	1
Switch Phase						
Minimum Initial (s)	6.0		6.0	6.0	6.0	6.0
Minimum Split (s)	32.0		11.0	11.0	11.0	11.0
Total Split (s)	76.0	0.0	25.0	101.0	19.0	25.0
Total Split (%)	63.3%	0.0%	20.8%	84.2%	15.8%	20.8%
1 otal Opiit (70)	00.070	0.070	20.070	UT.Z /U	10.070	20.070

	-	•	•	•		
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Maximum Green (s)	71.0		20.0	96.0	14.0	20.0
Yellow Time (s)	3.5		3.5	3.5	3.5	3.5
All-Red Time (s)	1.5		1.5	1.5	1.5	1.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	4.0	5.0	5.0	5.0	5.0
Lead/Lag	Lead		Lag			Lag
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Recall Mode	C-Max		None	C-Max	None	None
Walk Time (s)	7.0					
Flash Dont Walk (s)	20.0					
Pedestrian Calls (#/hr)	8					
Act Effct Green (s)	72.2		97.2	97.2	12.8	37.8
Actuated g/C Ratio	0.60		0.81	0.81	0.11	0.32
v/c Ratio	0.77		0.63	0.51	0.67	0.49
Control Delay	20.4		33.5	4.7	48.3	25.0
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	20.4		33.5	4.7	48.3	25.0
LOS	С		С	Α	D	С
Approach Delay	20.4			8.6	36.7	
Approach LOS	С			Α	D	
Intersection Summary						
Area Type:	Other					
Cycle Length: 120						
Actuated Cycle Length: 1	20					

Offset: 88 (73%), Referenced to phase 2:EBT and 6:WBTL, Start of Yellow

Natural Cycle: 60


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.77

Intersection Signal Delay: 17.7 Intersection LOS: B Intersection Capacity Utilization 70.4% ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 2: Opportunity Corridor & Quadrant

	ၨ	→	•	•	←	•	•	†	~	/	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ተተ _ጉ		ሻ	↑ ↑		*	↑ ↑		ሻ	∱ }	
Volume (vph)	10	1840	170	10	1230	10	250	300	10	10	120	20
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	290		0	340		0	150		0	160		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	25		25	25		25	25		25	25		25
Lane Util. Factor	1.00	0.91	0.91	1.00	0.95	0.95	1.00	0.95	0.95	1.00	0.95	0.95
Frt		0.987			0.999			0.995			0.978	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1711	4852	0	1711	3418	0	1711	3404	0	1711	3346	0
Flt Permitted	0.141			0.052			0.485			0.549		
Satd. Flow (perm)	254	4852	0	94	3418	0	873	3404	0	989	3346	0
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		1919			2120			705			713	
Travel Time (s)		37.4			41.3			13.7			13.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	11	2000	185	11	1337	11	272	326	11	11	130	22
Shared Lane Traffic (%)												
Lane Group Flow (vph)	11	2185	0	11	1348	0	272	337	0	11	152	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		24	J		24	J		11	J		11	J
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1		1	1		1	1		1	1	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	35	35		35	35		35	35		35	35	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	35	35		35	35		35	35		35	35	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Turn Type	Perm			Perm			pm+pt			Perm		
Protected Phases		2			6		3	8			4	
Permitted Phases	2			6			8	8		4		
Detector Phase	2	2		6	6		3	8		4	4	
Switch Phase	_	_		· ·				, and the second		•	•	
Minimum Initial (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Minimum Split (s)	32.0	32.0		32.0	32.0		12.0	36.0		36.0	36.0	
Total Split (s)	65.0	65.0	0.0	65.0	65.0	0.0	19.0	55.0	0.0	36.0	36.0	0.0
Total Split (%)	54.2%	54.2%	0.0%	54.2%	54.2%	0.0%	15.8%	45.8%	0.0%	30.0%	30.0%	0.0%
- 5tal Spirit (75)	01.270	0 1.2 /0	0.070	J 1.2/0	0 1.270	0.070	10.070	10.070	0.070	55.070	00.070	0.070

	ᄼ	→	•	•	←	•	•	†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Maximum Green (s)	60.0	60.0		60.0	60.0		14.0	50.0		31.0	31.0	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.5	1.5		1.5	1.5		1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0
Lead/Lag							Lead			Lag	Lag	
Lead-Lag Optimize?							Yes					
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	C-Max	C-Max		C-Max	C-Max		None	None		None	None	
Walk Time (s)	7.0	7.0		7.0	7.0			7.0		7.0	7.0	
Flash Dont Walk (s)	20.0	20.0		20.0	20.0			24.0		24.0	24.0	
Pedestrian Calls (#/hr)	8	8		8	8			8		8	8	
Act Effct Green (s)	76.8	76.8		76.8	76.8		33.2	33.2		14.2	14.2	
Actuated g/C Ratio	0.64	0.64		0.64	0.64		0.28	0.28		0.12	0.12	
v/c Ratio	0.07	0.70		0.18	0.62		0.80	0.36		0.09	0.38	
Control Delay	5.8	7.8		24.1	15.6		54.7	34.9		43.5	49.7	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	5.8	7.8		24.1	15.6		54.7	34.9		43.5	49.7	
LOS	А	Α		С	В		D	С		D	D	
Approach Delay		7.8			15.6			43.7			49.3	
Approach LOS		Α			В			D			D	

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Yellow

Natural Cycle: 90


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.80

Intersection Signal Delay: 16.9 Intersection LOS: B
Intersection Capacity Utilization 70.7% ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 3: Opportunity Corridor & Kinsman Rd

	۶	→	•	•	←	•	4	†	~	/	ļ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተተ _ጉ		Ť	↑ ↑		*	f)		ሻ	f)	
Volume (vph)	40	1810	10	10	1230	10	10	40	20	10	10	20
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	600		0	450		0	150		0	160		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	25		25	25		25	25		25	25		25
Lane Util. Factor	1.00	0.91	0.91	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.999			0.999			0.949			0.900	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1711	4911	0	1711	3418	0	1711	1709	0	1711	1621	0
Flt Permitted	0.183			0.087			0.736			0.715		
Satd. Flow (perm)	330	4911	0	157	3418	0	1325	1709	0	1287	1621	0
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			25			25	
Link Distance (ft)		2120			925			700			775	
Travel Time (s)		41.3			18.0			19.1			21.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	43	1967	11	11	1337	11	11	43	22	11	11	22
Shared Lane Traffic (%)												
Lane Group Flow (vph)	43	1978	0	11	1348	0	11	65	0	11	33	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		24			24			11	J		11	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1		1	1		1	1		1	1	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	35	35		35	35		35	35		35	35	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	35	35		35	35		35	35		35	35	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Turn Type	Perm			Perm			Perm			Perm		
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Detector Phase	2	2		6	6		4	4		8	8	
Switch Phase												
Minimum Initial (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Minimum Split (s)	32.0	32.0		32.0	32.0		36.0	36.0		36.0	36.0	
Total Split (s)	84.0	84.0	0.0	84.0	84.0	0.0	36.0	36.0	0.0	36.0	36.0	0.0
Total Split (%)	70.0%	70.0%	0.0%	70.0%	70.0%	0.0%	30.0%	30.0%	0.0%	30.0%	30.0%	0.0%
(/-//	. 5.576	. 3.070	3.070	. 3.370	. 3.370	3.070			3.070	- 3.370	- 3.070	3.070

	•	→	\rightarrow	•	←	•	4	†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Maximum Green (s)	79.0	79.0		79.0	79.0		31.0	31.0		31.0	31.0	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.5	1.5		1.5	1.5		1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	C-Max	C-Max		C-Max	C-Max		None	None		None	None	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	20.0	20.0		20.0	20.0		24.0	24.0		24.0	24.0	
Pedestrian Calls (#/hr)	8	8		8	8		8	8		8	8	
Act Effct Green (s)	99.9	99.9		99.9	99.9		13.3	13.3		13.3	13.3	
Actuated g/C Ratio	0.83	0.83		0.83	0.83		0.11	0.11		0.11	0.11	
v/c Ratio	0.16	0.48		0.08	0.47		0.07	0.34		0.08	0.18	
Control Delay	0.9	0.3		6.3	3.6		42.9	50.9		43.0	46.3	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	0.9	0.3		6.3	3.6		42.9	50.9		43.0	46.3	
LOS	Α	Α		Α	Α		D	D		D	D	
Approach Delay		0.3			3.6			49.7			45.5	
Approach LOS		А			А			D			D	

Area Type: Other

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 45 (38%), Referenced to phase 2:EBTL and 6:WBTL, Start of Yellow

Natural Cycle: 70

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.48

Intersection Signal Delay: 3.3 Intersection LOS: A Intersection Capacity Utilization 50.7% ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 4: Opportunity Corridor & E. 75th St

	ၨ	→	•	•	+	•	•	†	~	/	ţ	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተተ _ጉ		Ť	↑ ↑		7	†	7	ሻ	f)	
Volume (vph)	40	1670	140	90	1080	10	110	330	140	10	110	70
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	410		0	725		0	400		400	400		0
Storage Lanes	1		0	1		0	1		1	1		0
Taper Length (ft)	25		25	25		25	25		25	25		25
Lane Util. Factor	1.00	0.91	0.91	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.988			0.999				0.850		0.942	
Flt Protected	0.950			0.950			0.950			0.950	• • • • • • • • • • • • • • • • • • • •	
Satd. Flow (prot)	1711	4857	0	1711	3418	0	1711	1801	1531	1711	1696	0
Flt Permitted	0.222	1007		0.059	01.0		0.329		.001	0.450	.070	J
Satd. Flow (perm)	400	4857	0	106	3418	0	592	1801	1531	810	1696	0
Right Turn on Red	100	1007	No	100	0110	No	072	1001	No	0.0	1070	No
Satd. Flow (RTOR)			110			110			140			110
Link Speed (mph)		35			35			25			25	
Link Distance (ft)		925			2311			781			663	
Travel Time (s)		18.0			45.0			21.3			18.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	43	1815	152	98	1174	11	120	359	152	11	120	76
Shared Lane Traffic (%)	43	1015	132	70	11/4	11	120	337	132	11	120	70
Lane Group Flow (vph)	43	1967	0	98	1185	0	120	359	152	11	196	0
Enter Blocked Intersection	43 No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left		Left	Left	Right	Left	Left	
Median Width(ft)	Len	24	Rigiii	Leit	24	Right	Leit	11	Rigiti	Len	11	Right
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed (mph) Number of Detectors	10	1	9	10	1	9	13	1	1	10	1	9
	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Detector Template	35	35		35	35		35	35	Right 35	35	35	
Leading Detector (ft)		0									0	
Trailing Detector (ft)	0	0		0	0		0	0	0	0	0	
Detector 1 Position(ft)								35			35	
Detector 1 Size(ft)	35 CL Ex	35 CI+Ex		35 CL Ev	35 CL Ev		35 CI+Ex		35 CL Ev	35 CL Ev		
Detector 1 Type	CI+Ex	CI+EX		CI+Ex	CI+Ex		CI+EX	CI+Ex	CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Turn Type	Perm	2		pm+pt	,		pm+pt	4	pm+ov	Perm	0	
Protected Phases	2	2		1	6		7	4	1	0	8	
Permitted Phases	2	2		6	,		4	4	4	8	0	
Detector Phase	2	2		1	6		7	4	1	8	8	
Switch Phase												
Minimum Initial (s)	6.0	6.0		6.0	6.0		6.0	6.0	6.0	6.0	6.0	
Minimum Split (s)	32.0	32.0		11.0	32.0		12.0	36.0	11.0	36.0	36.0	
Total Split (s)	49.0	49.0	0.0	12.0	61.0	0.0	13.0	59.0	12.0	46.0	46.0	0.0
Total Split (%)	40.8%	40.8%	0.0%	10.0%	50.8%	0.0%	10.8%	49.2%	10.0%	38.3%	38.3%	0.0%

	•	-	•	•	←	•	4	†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Maximum Green (s)	44.0	44.0		7.0	56.0		8.0	54.0	7.0	41.0	41.0	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.5	1.5		1.5	1.5		1.5	1.5	1.5	1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	5.0	5.0	5.0	4.0
Lead/Lag	Lag	Lag		Lead			Lead		Lead	Lag	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Recall Mode	C-Max	C-Max		None	C-Max		None	None	None	None	None	
Walk Time (s)	7.0	7.0			7.0			7.0		7.0	7.0	
Flash Dont Walk (s)	20.0	20.0			20.0			24.0		24.0	24.0	
Pedestrian Calls (#/hr)	8	8			8			8		8	8	
Act Effct Green (s)	63.1	63.1		76.7	76.7		33.3	33.3	46.9	20.3	20.3	
Actuated g/C Ratio	0.53	0.53		0.64	0.64		0.28	0.28	0.39	0.17	0.17	
v/c Ratio	0.20	0.77		0.54	0.54		0.50	0.72	0.25	0.08	0.68	
Control Delay	5.2	10.1		26.5	9.4		39.7	47.0	24.2	39.1	58.1	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay	5.2	10.1		26.5	9.4		39.7	47.0	24.2	39.1	58.1	
LOS	А	В		С	Α		D	D	С	D	Е	
Approach Delay		10.0			10.7			40.1			57.1	
Approach LOS		Α			В			D			Е	

Area Type: Other

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 60 (50%), Referenced to phase 2:EBTL and 6:WBTL, Start of Yellow

Natural Cycle: 105

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.77

Intersection Signal Delay: 17.2 Intersection LOS: B
Intersection Capacity Utilization 79.4% ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 5: Opportunity Corridor & E. 79th St

	۶	→	•	•	←	•	•	†	~	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ተተ _ጉ		Ť	↑ ↑		ሻ	↑ ↑		ሻ	∱ }	
Volume (vph)	10	1720	80	40	960	10	210	640	270	10	420	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	600		0	290		0	425		0	225		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	25		25	25		25	25		25	25		25
Lane Util. Factor	1.00	0.91	0.91	1.00	0.95	0.95	1.00	0.95	0.95	1.00	0.95	0.95
Frt		0.993			0.998			0.956			0.996	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1711	4881	0	1711	3414	0	1711	3271	0	1711	3408	0
Flt Permitted	0.236	,,,,,	-	0.064			0.238		-	0.174		
Satd. Flow (perm)	425	4881	0	115	3414	0	429	3271	0	313	3408	0
Right Turn on Red	.20	1001	No		0	No	,	0271	No	0.0	0.00	No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		2311			651			862			1038	
Travel Time (s)		45.0			12.7			16.8			20.2	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	11	1870	87	43	1043	11	228	696	293	11	457	11
Shared Lane Traffic (%)		1070	07	10	1010		220	070	270		107	
Lane Group Flow (vph)	11	1957	0	43	1054	0	228	989	0	11	468	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Lort	24	rtigitt	Loit	24	rtigiit	Lon	11	rugin	Lon	11	rtigin
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1	· · · · ·	1	1	,	1	1	,	1	1	,
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	35	35		35	35		35	35		35	35	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	35	35		35	35		35	35		35	35	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Turn Type	Perm			pm+pt			pm+pt			Perm		
Protected Phases		2		1	6		3	8			4	
Permitted Phases	2			6			8			4		
Detector Phase	2	2		1	6		3	8		4	4	
Switch Phase	_	_						, and the second		•	•	
Minimum Initial (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Minimum Split (s)	32.0	32.0		12.0	32.0		12.0	36.0		36.0	36.0	
Total Split (s)	57.0	57.0	0.0	12.0	69.0	0.0	17.0	51.0	0.0	34.0	34.0	0.0
Total Split (%)	47.5%	47.5%	0.0%	10.0%	57.5%	0.0%	14.2%	42.5%	0.0%	28.3%	28.3%	0.0%
- Star Spirit (70)	17.070	17.070	3.070	10.070	07.070	3.070	1 1.2 /0	12.070	3.070	20.070	20.070	3.070

	ᄼ	-	•	•	←	•	•	†		-	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Maximum Green (s)	52.0	52.0		7.0	64.0		12.0	46.0		29.0	29.0	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.5	1.5		1.5	1.5		1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0
Lead/Lag	Lag	Lag		Lead			Lead			Lag	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes			Yes					
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	C-Max	C-Max		None	C-Max		None	None		None	None	
Walk Time (s)	7.0	7.0			7.0			7.0		7.0	7.0	
Flash Dont Walk (s)	20.0	20.0			20.0			24.0		24.0	24.0	
Pedestrian Calls (#/hr)	8	8			8			8		8	8	
Act Effct Green (s)	58.8	58.8		68.3	68.3		41.7	41.7		24.7	24.7	
Actuated g/C Ratio	0.49	0.49		0.57	0.57		0.35	0.35		0.21	0.21	
v/c Ratio	0.05	0.82		0.28	0.54		0.82	0.87		0.17	0.67	
Control Delay	5.6	20.2		17.1	23.8		53.9	45.7		43.9	48.4	
Queue Delay	0.0	0.0		0.0	0.3		0.0	0.0		0.0	0.0	
Total Delay	5.6	20.2		17.1	24.1		53.9	45.7		43.9	48.4	
LOS	Α	С		В	С		D	D		D	D	
Approach Delay		20.1			23.8			47.2			48.3	
Approach LOS		С			С			D			D	

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Yellow

Natural Cycle: 105

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.87

Intersection Signal Delay: 30.7 Intersection LOS: C
Intersection Capacity Utilization 78.8% ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 6: Opportunity Corridor & Buckeye Rd

	۶	→	•	•	←	•	4	†	~	/	ļ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተተ _ጉ		Ť	∱ }		*	∱ }		ሻ	↑ ↑	
Volume (vph)	10	1820	170	10	770	20	230	190	10	90	190	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	315		0	650		0	375		0	225		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	25		25	25		25	25		25	25		25
Lane Util. Factor	1.00	0.91	0.91	1.00	0.95	0.95	1.00	0.95	0.95	1.00	0.95	0.95
Frt		0.987			0.996			0.992			0.992	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1711	4852	0	1711	3408	0	1711	3394	0	1711	3394	0
Flt Permitted	0.285			0.053			0.602			0.602		
Satd. Flow (perm)	513	4852	0	95	3408	0	1084	3394	0	1084	3394	0
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		651			1033			944			1183	
Travel Time (s)		12.7			20.1			18.4			23.0	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	11	1978	185	11	837	22	250	207	11	98	207	11
Shared Lane Traffic (%)												
Lane Group Flow (vph)	11	2163	0	11	859	0	250	218	0	98	218	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		24			24			11	J		11	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1		1	1		1	1		1	1	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	35	35		35	35		35	35		35	35	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	35	35		35	35		35	35		35	35	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Turn Type	Perm			Perm			Perm			Perm		
Protected Phases		2			6			8			4	
Permitted Phases	2	2		6			8			4		
Detector Phase	2	2		6	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Minimum Split (s)	32.0	32.0		32.0	32.0		36.0	36.0		36.0	36.0	
Total Split (s)	47.0	47.0	0.0	47.0	47.0	0.0	73.0	73.0	0.0	73.0	73.0	0.0
Total Split (%)	39.2%	39.2%	0.0%	39.2%	39.2%	0.0%	60.8%	60.8%	0.0%	60.8%	60.8%	0.0%
1 1 7												

	•	→	•	•	←	•	4	†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Maximum Green (s)	42.0	42.0		42.0	42.0		68.0	68.0		68.0	68.0	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.5	1.5		1.5	1.5		1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	C-Max	C-Max		C-Max	C-Max		None	None		None	None	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	20.0	20.0		20.0	20.0		24.0	24.0		24.0	24.0	
Pedestrian Calls (#/hr)	8	8		8	8		8	8		8	8	
Act Effct Green (s)	74.8	74.8		74.8	74.8		35.2	35.2		35.2	35.2	
Actuated g/C Ratio	0.62	0.62		0.62	0.62		0.29	0.29		0.29	0.29	
v/c Ratio	0.03	0.72		0.19	0.40		0.79	0.22		0.31	0.22	
Control Delay	23.5	26.7		38.6	25.0		54.8	30.6		32.7	30.6	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	23.5	26.7		38.6	25.0		54.8	30.6		32.7	30.6	
LOS	С	С		D	С		D	С		С	С	
Approach Delay		26.7			25.2			43.6			31.2	
Approach LOS		С			С			D			С	

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 96 (80%), Referenced to phase 2:EBTL and 6:WBTL, Start of Yellow

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.79

Intersection Signal Delay: 28.8 Intersection LOS: C
Intersection Capacity Utilization 69.8% ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 7: Opportunity Corridor & Woodland Ave

	۶	→	•	€	+	•	•	†	~	/	ţ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	7	↑ ↑		ሻ	†	7	ሻ	†	7
Volume (vph)	430	1480	10	40	580	10	10	410	200	10	230	220
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	460		0	500		0	190		190	290		240
Storage Lanes	1		1	1		0	1		1	1		1
Taper Length (ft)	25		25	25		25	25		25	25		25
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850		0.997				0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1711	3421	1531	1711	3411	0	1711	1801	1531	1711	1801	1531
Flt Permitted	0.265			0.139			0.454			0.174		
Satd. Flow (perm)	477	3421	1531	250	3411	0	817	1801	1531	313	1801	1531
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			30			25	
Link Distance (ft)		1033			2188			492			838	
Travel Time (s)		20.1			42.6			11.2			22.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	467	1609	11	43	630	11	11	446	217	11	250	239
Shared Lane Traffic (%)												
Lane Group Flow (vph)	467	1609	11	43	641	0	11	446	217	11	250	239
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		24	J		24			11	J		11	J
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1		1	1	1	1	1	1
Detector Template	Left	Thru	Right	Left	Thru		Left	Thru	Right	Left	Thru	Right
Leading Detector (ft)	35	35	35	35	35		35	35	35	35	35	35
Trailing Detector (ft)	0	0	0	0	0		0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0		0	0	0	0	0	0
Detector 1 Size(ft)	35	35	35	35	35		35	35	35	35	35	35
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												· ·
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Turn Type	pm+pt		Perm	Perm			Perm		Perm	Perm		Perm
Protected Phases	5	2			6			8			4	
Permitted Phases	2	_	2	6			8		8	4	•	4
Detector Phase	5	2	2	6	6		8	8	8	4	4	4
Switch Phase	· ·	_	_	, and the second	J				· ·	•	•	•
Minimum Initial (s)	6.0	6.0	6.0	6.0	6.0		6.0	6.0	6.0	6.0	6.0	6.0
Minimum Split (s)	12.0	32.0	32.0	32.0	32.0		36.0	36.0	36.0	36.0	36.0	36.0
Total Split (s)	30.0	72.0	72.0	42.0	42.0	0.0	48.0	48.0	48.0	48.0	48.0	48.0
Total Split (%)	25.0%	60.0%	60.0%	35.0%	35.0%	0.0%	40.0%	40.0%	40.0%	40.0%	40.0%	40.0%
Total Split (70)	20.070	00.070	00.070	33.070	33.070	0.070	TU.U/0	TU.U /U	TU.U/0	TU.U/0	TU.U/0	TU.U70

	٠	-	•	•	←	•	1	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Maximum Green (s)	25.0	67.0	67.0	37.0	37.0		43.0	43.0	43.0	43.0	43.0	43.0
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5		3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5		1.5	1.5	1.5	1.5	1.5	1.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	4.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	Lead			Lag	Lag							
Lead-Lag Optimize?	Yes											
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	C-Max	C-Max	C-Max	C-Max		None	None	None	None	None	None
Walk Time (s)		7.0	7.0	7.0	7.0		7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)		20.0	20.0	20.0	20.0		24.0	24.0	24.0	24.0	24.0	24.0
Pedestrian Calls (#/hr)		8	8	8	8		8	8	8	8	8	8
Act Effct Green (s)	74.9	74.9	74.9	44.5	44.5		35.1	35.1	35.1	35.1	35.1	35.1
Actuated g/C Ratio	0.62	0.62	0.62	0.37	0.37		0.29	0.29	0.29	0.29	0.29	0.29
v/c Ratio	0.84	0.75	0.01	0.46	0.51		0.05	0.85	0.48	0.12	0.47	0.53
Control Delay	27.6	8.3	1.9	44.7	21.0		27.5	54.6	37.7	31.2	36.9	39.1
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	27.6	8.3	1.9	44.7	21.0		27.5	54.6	37.7	31.2	36.9	39.1
LOS	С	Α	Α	D	С		С	D	D	С	D	D
Approach Delay		12.6			22.5			48.7			37.8	
Approach LOS		В			С			D			D	

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 3 (3%), Referenced to phase 2:EBTL and 6:WBTL, Start of Yellow

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.85

Intersection Signal Delay: 23.7 Intersection LOS: C
Intersection Capacity Utilization 80.0% ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 8: Opportunity Corridor & E. 93rd St

	۶	•	4	†	ļ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*	7	ኘ	^	†	
Volume (vph)	10	10	130	1550	610	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	100	0	600	1700	1700	0
Storage Lanes	100	1	1			0
Taper Length (ft)	25	25	25			25
Lane Util. Factor	1.00	1.00	1.00	0.95	0.95	0.95
Frt	1.00	0.850	1.00	0.70	0.93	0.70
Flt Protected	0.950	0.000	0.950		0.770	
Satd. Flow (prot)	1711	1531	1711	3421	3414	0
Flt Permitted		1331		34Z I	3414	U
	0.950	1501	0.395	2421	2/1/	0
Satd. Flow (perm)	1711	1531	711	3421	3414	0
Right Turn on Red		No				No
Satd. Flow (RTOR)						
Link Speed (mph)	35			35	30	
Link Distance (ft)	1147			2188	1451	
Travel Time (s)	22.3			42.6	33.0	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	11	11	141	1685	663	11
Shared Lane Traffic (%)						
Lane Group Flow (vph)	11	11	141	1685	674	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	11	J		12	11	<u> </u>
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane					Yes	
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed (mph)	1.04	9	1.04	1.07	1.01	9
Number of Detectors	1	1	13	1	1	,
Detector Template	Left		Left	Thru	Thru	
Leading Detector (ft)	35	Right 35	35	35	35	
Trailing Detector (ft)	0	0	0	0	0	
Detector 1 Position(ft)	0	0	0	0	0	
Detector 1 Size(ft)	35	35	35	35	35	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel		_				
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	
Turn Type		custom	Perm			
Protected Phases				2	6	
Permitted Phases	4	4	2			
Detector Phase	4	4	2	2	6	
Switch Phase						
Minimum Initial (s)	6.0	6.0	6.0	6.0	6.0	
Minimum Split (s)	32.0	32.0	32.0	32.0	24.0	
Total Split (s)	32.0	32.0	88.0	88.0	88.0	0.0
	26.7%	26.7%	73.3%	73.3%	73.3%	0.0%
Total Split (%)	20.7%	20.1%	13.3%	13.3%	13.3%	0.0%

	•	•	1	†	↓	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Maximum Green (s)	27.0	27.0	83.0	83.0	83.0	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	4.0
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	C-Max	C-Max	C-Max	
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	
Flash Dont Walk (s)	20.0	20.0	20.0	20.0	11.0	
Pedestrian Calls (#/hr)	8	8	8	8	8	
Act Effct Green (s)	10.5	10.5	105.9	105.9	105.9	
Actuated g/C Ratio	0.09	0.09	0.88	0.88	0.88	
v/c Ratio	0.07	0.08	0.22	0.56	0.22	
Control Delay	46.1	46.5	3.6	3.3	0.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	46.1	46.5	3.6	3.3	0.9	
LOS	D	D	Α	Α	А	
Approach Delay	46.3			3.3	0.9	
Approach LOS	D			А	Α	
Intersection Summary						
Area Type:	Other					
Cycle Length: 120						
Actuated Cycle Length: 12	20					
Offset: 32 (27%), Referen	ced to phase	2:NBTL	and 6:SB	T, Start o	f Yellow	
Natural Cycle: 75	·					
Control Type: Actuated-C	oordinated					
Maximum v/c Ratio: 0.56						

Intersection Signal Delay: 3.0
Intersection Capacity Utilization 56.2%
Analysis Period (min) 15

Splits and Phases: 9: Quincy Ave &

Intersection LOS: A ICU Level of Service B

	۶	→	•	•	+	•	•	†	~	/	ţ	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑ ↑		Ť	f)		ሻ	ተተ _ጉ		ሻ	↑ ↑	
Volume (vph)	70	310	10	140	180	100	30	1050	420	30	460	70
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	255		0	350		0	600		0	325		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	25		25	25		25	25		25	25		25
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00	1.00	0.91	0.91	1.00	0.95	0.95
Frt	1.00	0.995	0.70	1.00	0.946	1.00	1.00	0.957	0.71	1.00	0.980	0.70
Flt Protected	0.950	0.770		0.950	0.710		0.950	0.707		0.950	0.700	
Satd. Flow (prot)	1711	3404	0	1711	1703	0	1711	4704	0	1711	3353	0
Flt Permitted	0.574	3404	U	0.279	1703	U	0.410	4704	U	0.113	3333	U
Satd. Flow (perm)	1034	3404	0	502	1703	0	738	4704	0	203	3353	0
Right Turn on Red	1034	3404	No	302	1703	No	730	4704	No	203	3333	No
Satd. Flow (RTOR)			INO			INO			INU			INO
		35			35			30			35	
Link Speed (mph)					1164							
Link Distance (ft)		1015						668			652	
Travel Time (s)	0.00	19.8	0.00	0.00	22.7	0.00	0.00	15.2	0.00	0.00	12.7	0.00
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	76	337	11	152	196	109	33	1141	457	33	500	76
Shared Lane Traffic (%)	٦,	2.40		450	225	•		4500			,	
Lane Group Flow (vph)	76	348	0	152	305	0	33	1598	0	33	576	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		11			11			11			11	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		Yes						Yes			Yes	
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1		1	1		1	1		1	1	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	35	35		35	35		35	35		35	35	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	35	35		35	35		35	35		35	35	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Turn Type	Perm			pm+pt			Perm			Perm		
Protected Phases		4		3	8			2			6	
Permitted Phases	4	•		8			2	_		6		
Detector Phase	4	4		3	8		2	2		6	6	
Switch Phase	•	•		0	U			_		J	U	
Minimum Initial (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Minimum Split (s)	32.0	32.0		12.0	32.0		24.0	24.0		32.0	32.0	
Total Split (s)	33.0	33.0	0.0	18.0	51.0	0.0	69.0	69.0	0.0	69.0	69.0	0.0
Total Split (%)	27.5%	27.5%	0.0%	15.0%	42.5%	0.0%	57.5%	57.5%	0.0%	57.5%	57.5%	0.0%
Tutal Split (70)	۷1.3%	۷1.3%	U.U%	13.0%	42.3%	U.U%	57.5%	07.0%	0.0%	37.3%	57.5%	0.0%

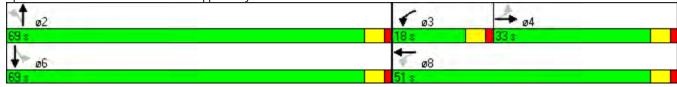
	•	→	•	•	←	•	4	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Maximum Green (s)	28.0	28.0		13.0	46.0		64.0	64.0		64.0	64.0	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.5	1.5		1.5	1.5		1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	
Walk Time (s)	7.0	7.0			7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	20.0	20.0			20.0		11.0	11.0		20.0	20.0	
Pedestrian Calls (#/hr)	8	8			8		8	8		8	8	
Act Effct Green (s)	18.5	18.5		35.6	35.6		74.4	74.4		74.4	74.4	
Actuated g/C Ratio	0.15	0.15		0.30	0.30		0.62	0.62		0.62	0.62	
v/c Ratio	0.47	0.66		0.56	0.60		0.07	0.55		0.26	0.28	
Control Delay	54.9	53.5		39.6	40.7		5.6	6.7		35.3	23.6	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	54.9	53.5		39.6	40.7		5.6	6.7		35.3	23.6	
LOS	D	D		D	D		Α	Α		D	С	
Approach Delay		53.7			40.3			6.7			24.2	
Approach LOS		D			D			Α			С	

Area Type: Other

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 87 (73%), Referenced to phase 2:NBTL and 6:SBTL, Start of Yellow

Natural Cycle: 80


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.66

Intersection Signal Delay: 21.4 Intersection LOS: C
Intersection Capacity Utilization 62.7% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 10: Cedar Ave & Opportunity Corridor

Bane Group EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR		ᄼ	→	•	•	←	•	•	†	~	/	ļ	1
Volume (vph)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Volume (vph)	Lane Configurations	*	† 13		Ť	44	7	ሻ	ተ ቀኄ		ሻ	♦ %	
Ideal Flow (vphpl) 1900				30						20	40		10
Storage Length (ft)	, , ,	1900	1900	1900	1900		1900	1900	1900	1900	1900	1900	1900
Storage Lanesh 1		625		0	250		640	150		0	500		0
Taper Length (III)		1		0	1		1	1		0	1		
Fith		25		25	25		25	25		25	25		25
Fite Protected 0.950 0.950 0.950 0.950 0.950 0.0	Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	1.00	1.00	0.91	0.91	1.00	0.95	0.95
Satd. Flow (prot) 1711 3394 0 1711 3421 1531 1711 4901 0 1711 3408 0 1711 3408 0 1711 3408 0 0.247 0.440 0.245 3408 0 0 0.245 3408 0 0.245 3408 0 0.245 3408 0 0.245 3408 0 0.245 3408 0 0.245 3408 0 0.245 3408 0 0.245 3408 0 0.245 3408 0 0.245 3408 0 0.245 3408 0 0.245 3408 0 0.245 3408 0 0.245 3408 0 0.245 3408 0 0.245 3408 0 0.245 3408	Frt		0.992				0.850		0.997			0.996	
Fit Permitted	Flt Protected	0.950			0.950			0.950			0.950		
Satid. Flow (perm) 151 3394 0 535 3421 1531 792 4901 0 245 3408 0 No No No No No No No	Satd. Flow (prot)	1711	3394	0	1711	3421	1531	1711	4901	0	1711	3408	0
Right Turn on Red No Satist Flow (RTOR)		0.084			0.297			0.440			0.136		
Said. Flow (RTOR) Link Speed (mph) 35 35 35 35 35 35 35 35 35 1288 652 918 77.9	Satd. Flow (perm)	151	3394	0	535	3421	1531	792	4901	0	245	3408	0
Link Speed (mph) 35 35 35 35 35 35 35 35 35 35 1288 652 918 7 7 128 652 918 7 128 652 918 7 128 128 652 918 7 128 128 652 918 128 128 128 652 918 128 128 120 0.92 0.	Right Turn on Red			No			No			No			No
Link Distance (ff)	Satd. Flow (RTOR)												
Travel Time (s)			35			35			35			35	
Peak Hour Factor 0.92 0.			1245			1288			652			918	
Adj. Flow (vph) 11 576 33 196 1663 120 54 1141 22 43 413 11 Shared Lane Traffic (%) Lane Group Flow (vph) 11 609 0 196 1663 120 54 1163 0 43 424 0 Enter Blocked Intersection No	Travel Time (s)		24.3			25.1			12.7			17.9	
Shared Lane Traffic (%) Lane Group Flow (vph) 11 609 0 196 1663 120 54 1163 0 43 424 0	Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Lane Group Flow (vph)	Adj. Flow (vph)	11	576	33	196	1663	120	54	1141	22	43	413	11
Enter Blocked Intersection No No No No No No No	Shared Lane Traffic (%)												
Lane Alignment Left Left Right Left Right Left Left Right Left Right Left Right Left Right Left Right Left Right Left Right Left Right Left Right Left Right Left Right Left Right Left Right Left Left Right Left Left Right Left Left Left Intraction 1 <th< td=""><td></td><td>11</td><td>609</td><td>0</td><td>196</td><td>1663</td><td>120</td><td>54</td><td>1163</td><td>0</td><td>43</td><td>424</td><td>0</td></th<>		11	609	0	196	1663	120	54	1163	0	43	424	0
Median Width(ff) 11 16 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Median Width(ff) 11 16 10 10 10 10 10 10 10 10 10 10 10 10 10 10	Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Crosswalk Width(fft) 16 16 16 16 16 Two way Left Turn Lane Yes <	Median Width(ft)		11	, i		11	ŭ		11	, i		11	Ü
Two way Left Turn Lane Yes Yes Yes Yes Headway Factor 1.04	Link Offset(ft)		0			0			0			0	
Headway Factor 1.04	Crosswalk Width(ft)		16			16			16			16	
Headway Factor 1.04	Two way Left Turn Lane		Yes			Yes			Yes			Yes	
Number of Detectors 1	Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
Number of Detectors 1		15		9	15		9	15		9	15		9
Leading Detector (ft) 35 36 36 36 </td <td>Number of Detectors</td> <td>1</td> <td>1</td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td>1</td> <td>1</td> <td></td>	Number of Detectors	1	1		1	1	1	1	1		1	1	
Leading Detector (ft) 35 36 36 36 </td <td>Detector Template</td> <td>Left</td> <td>Thru</td> <td></td> <td>Left</td> <td>Thru</td> <td>Right</td> <td>Left</td> <td>Thru</td> <td></td> <td>Left</td> <td>Thru</td> <td></td>	Detector Template	Left	Thru		Left	Thru	Right	Left	Thru		Left	Thru	
Detector 1 Position(ft) 0	Leading Detector (ft)	35	35		35	35	35	35	35		35	35	
Detector 1 Size(ft) 35 <td>Trailing Detector (ft)</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td></td>	Trailing Detector (ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Type CI+Ex	Detector 1 Position(ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Channel Detector 1 Extend (s) 0.0 <	Detector 1 Size(ft)	35	35		35	35	35	35	35		35	35	
Detector 1 Channel Detector 1 Extend (s) 0.0 <		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Detector 1 Channel												
` '	Detector 1 Extend (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Detector 1 Queue (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
D = D = D = D = D = D = D = D = D = D =	Detector 1 Delay (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Turn Type Perm pm+pt Perm Perm Perm	Turn Type	Perm			pm+pt		Perm	Perm			Perm		
Protected Phases 4 3 8 2 6			4			8			2			6	
Permitted Phases 4 8 8 2 6	Permitted Phases	4			8		8	2			6		
Detector Phase 4 4 3 8 8 2 2 6 6	Detector Phase	4	4		3	8	8	2	2		6	6	
Switch Phase	Switch Phase												
Minimum Initial (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0		6.0	6.0		6.0	6.0	6.0	6.0	6.0		6.0	6.0	
Minimum Split (s) 32.0 32.0 12.0 32.0 36.0 36.0 32.0 32.0													
Total Split (s) 52.0 52.0 0.0 20.0 72.0 72.0 48.0 48.0 0.0 48.0 0.0				0.0						0.0			0.0
Total Split (%) 43.3% 43.3% 0.0% 16.7% 60.0% 60.0% 40.0% 40.0% 0.0% 40.0% 0.0%													

	•	→	•	•	←	•	•	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Maximum Green (s)	47.0	47.0		15.0	67.0	67.0	43.0	43.0		43.0	43.0	
Yellow Time (s)	3.5	3.5		3.5	3.5	3.5	3.5	3.5		3.5	3.5	
All-Red Time (s)	1.5	1.5		1.5	1.5	1.5	1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	4.0	5.0	5.0	5.0	5.0	5.0	4.0	5.0	5.0	4.0
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?				Yes								
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None	None	C-Max	C-Max		C-Max	C-Max	
Walk Time (s)	7.0	7.0			7.0	7.0	7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	20.0	20.0			20.0	20.0	24.0	24.0		20.0	20.0	
Pedestrian Calls (#/hr)	8	8			8	8	8	8		8	8	
Act Effct Green (s)	47.8	47.8		65.4	65.4	65.4	44.6	44.6		44.6	44.6	
Actuated g/C Ratio	0.40	0.40		0.54	0.54	0.54	0.37	0.37		0.37	0.37	
v/c Ratio	0.18	0.45		0.47	0.89	0.14	0.18	0.64		0.47	0.33	
Control Delay	32.9	27.8		17.7	31.4	13.6	29.1	37.2		49.6	29.7	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	32.9	27.8		17.7	31.4	13.6	29.1	37.2		49.6	29.7	
LOS	С	С		В	С	В	С	D		D	С	
Approach Delay		27.9			29.0			36.8			31.5	
Approach LOS		С			С			D			С	

Area Type: Other

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Yellow

Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.89

Intersection Signal Delay: 31.3 Intersection LOS: C
Intersection Capacity Utilization 89.7% ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 11: Carnegie Ave & Opportunity Corridor

	۶	→	•	•	+	•	•	†	~	/	ţ	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f)		Ť	f)		7	† †	7	*	∱ }	
Volume (vph)	160	300	60	40	410	20	90	520	480	10	310	260
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	500		0	525		0	350		0	225		0
Storage Lanes	1		0	1		0	1		1	1		0
Taper Length (ft)	25		25	25		25	25		25	25		25
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	0.95
Frt		0.975			0.993				0.850		0.932	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1711	1756	0	1711	1788	0	1711	3421	1531	1711	3189	0
Flt Permitted	0.950		Ū	0.950		J	0.313	0.2.		0.347	0.07	
Satd. Flow (perm)	1711	1756	0	1711	1788	0	564	3421	1531	625	3189	0
Right Turn on Red			No			No		0.2.	No	020	0.07	No
Satd. Flow (RTOR)												
Link Speed (mph)		25			25			35			35	
Link Distance (ft)		1124			935			918			658	
Travel Time (s)		30.7			25.5			17.9			12.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	174	326	65	43	446	22	98	565	522	11	337	283
Shared Lane Traffic (%)	177	320	03	70	770	22	70	303	322		337	200
Lane Group Flow (vph)	174	391	0	43	468	0	98	565	522	11	620	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Lort	11	rtigit	Loit	11	rtigit	Lon	11	rtigitt	Loit	11	rtigitt
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane								Yes			Yes	
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1		1	1		1	1	1	1	1	-
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	
Leading Detector (ft)	35	35		35	35		35	35	35	35	35	
Trailing Detector (ft)	0	0		0	0		0	0	0	0	0	
Detector 1 Position(ft)	0	0		0	0		0	0	0	0	0	
Detector 1 Size(ft)	35	35		35	35		35	35	35	35	35	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Turn Type	Prot			Prot			Perm		pm+ov	Perm		
Protected Phases	7	4		3	8			2	3		6	
Permitted Phases		•			-		2	_	2	6	-	
Detector Phase	7	4		3	8		2	2	3	6	6	
Switch Phase	•	•		Ū	J		_	_	J	Ū	J	
Minimum Initial (s)	6.0	6.0		6.0	6.0		6.0	6.0	6.0	6.0	6.0	
Minimum Split (s)	11.0	37.0		11.0	37.0		32.0	32.0	11.0	32.0	32.0	
Total Split (s)	35.0	61.0	0.0	27.0	53.0	0.0	32.0	32.0	27.0	32.0	32.0	0.0
Total Split (%)	29.2%	50.8%	0.0%	22.5%	44.2%	0.0%	26.7%	26.7%	22.5%	26.7%	26.7%	0.0%
1 otal Opin (70)	21.210	00.070	0.070	22.070	11.4/0	0.070	20.170	20.170	22.070	20.170	20.770	0.070

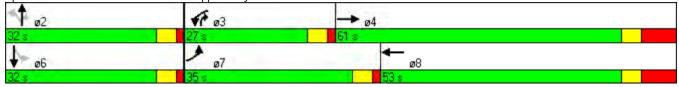
	•	→	•	•	←	•	1	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Maximum Green (s)	30.0	51.0		22.0	43.0		27.0	27.0	22.0	27.0	27.0	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.5	6.5		1.5	6.5		1.5	1.5	1.5	1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	10.0	4.0	5.0	10.0	4.0	5.0	5.0	5.0	5.0	5.0	4.0
Lead/Lag	Lead	Lag		Lead	Lag				Lead			
Lead-Lag Optimize?				Yes					Yes			
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None		None	None		C-Max	C-Max	None	C-Max	C-Max	
Walk Time (s)		7.0			7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)		20.0			20.0		20.0	20.0		20.0	20.0	
Pedestrian Calls (#/hr)		8			8		8	8		8	8	
Act Effct Green (s)	17.5	37.0		17.0	36.6		45.9	45.9	68.0	45.9	45.9	
Actuated g/C Ratio	0.15	0.31		0.14	0.30		0.38	0.38	0.57	0.38	0.38	
v/c Ratio	0.70	0.72		0.18	0.86		0.45	0.43	0.60	0.05	0.51	
Control Delay	62.9	44.5		44.3	54.8		37.7	28.3	11.0	28.0	24.4	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay	62.9	44.5		44.3	54.8		37.7	28.3	11.0	28.0	24.4	
LOS	Е	D		D	D		D	С	В	С	С	
Approach Delay		50.1			53.9			21.5			24.5	
Approach LOS		D			D			С			С	

Area Type: Other

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 113 (94%), Referenced to phase 2:NBTL and 6:SBTL, Start of Yellow

Natural Cycle: 80


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.86

Intersection Signal Delay: 33.4 Intersection LOS: C
Intersection Capacity Utilization 74.4% ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 12: Euclid Ave & Opportunity Corridor

	۶	→	•	•	+	•	•	†	~	/	ţ	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť	ተተ _ጉ		Ť	↑ ↑		*	↑ ↑		ሻ	↑ ↑	
Volume (vph)	170	510	90	10	1120	90	90	530	30	40	460	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	600		0	600		0	340		0	180		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	25		25	25		25	25		25	25		25
Lane Util. Factor	1.00	0.91	0.91	1.00	0.95	0.95	1.00	0.95	0.95	1.00	0.95	0.95
Frt	1.00	0.977	0.71	1.00	0.989	0.70	1.00	0.992	0.70	1.00	0.997	0.70
Flt Protected	0.950	0.777		0.950	0.707		0.950	0.772		0.950	0.777	
Satd. Flow (prot)	1711	4803	0	1711	3384	0	1711	3394	0	1711	3411	0
Flt Permitted	0.069	4003	U	0.393	3304	U	0.348	3374	U	0.279	3411	U
Satd. Flow (perm)	124	4803	0	708	3384	0	627	3394	0	502	3411	0
Right Turn on Red	124	4003	No	700	3304	No	027	3374	No	302	3411	No
Satd. Flow (RTOR)			INO			INO			INU			INO
		35			35			35			2E	
Link Speed (mph)					1070						35	
Link Distance (ft)		1230						658			1379	
Travel Time (s)	0.00	24.0	0.00	0.00	20.8	0.00	0.00	12.8	0.00	0.00	26.9	0.00
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	185	554	98	11	1217	98	98	576	33	43	500	11
Shared Lane Traffic (%)	405				4045							
Lane Group Flow (vph)	185	652	0	11	1315	0	98	609	0	43	511	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		11			11			11			11	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane								Yes				
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1		1	1		1	1		1	1	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	35	35		35	35		35	35		35	35	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	35	35		35	35		35	35		35	35	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Turn Type	pm+pt			Perm			Perm			Perm		
Protected Phases	7	4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	7	4		8	8		2	2		6	6	
Switch Phase	•	•		· ·			_	_		Ū		
Minimum Initial (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Minimum Split (s)	11.0	32.0		32.0	32.0		32.0	32.0		32.0	32.0	
Total Split (s)	20.0	81.0	0.0	61.0	61.0	0.0	39.0	39.0	0.0	39.0	39.0	0.0
Total Split (%)	16.7%	67.5%	0.0%	50.8%	50.8%	0.0%	32.5%	32.5%	0.0%	32.5%	32.5%	0.0%
τοιαι ομιι (70)	10.7 /0	07.370	U.U /0	JU.U /0	JU.U /0	U.U /0	JZ.J/0	JZ.J/0	U.U /0	JZ,J/0	JZ.J /0	0.070

	٠	→	•	•	←	•	4	†	~	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Maximum Green (s)	15.0	76.0		56.0	56.0		34.0	34.0		34.0	34.0	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.5	1.5		1.5	1.5		1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0
Lead/Lag	Lead			Lag	Lag							
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	
Walk Time (s)		7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)		20.0		20.0	20.0		20.0	20.0		20.0	20.0	
Pedestrian Calls (#/hr)		8		8	8		8	8		8	8	
Act Effct Green (s)	72.0	72.0		52.8	52.8		38.0	38.0		38.0	38.0	
Actuated g/C Ratio	0.60	0.60		0.44	0.44		0.32	0.32		0.32	0.32	
v/c Ratio	0.70	0.23		0.04	0.88		0.49	0.57		0.27	0.47	
Control Delay	40.5	11.0		18.1	38.7		37.6	31.0		39.0	35.8	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	40.5	11.0		18.1	38.7		37.6	31.0		39.0	35.8	
LOS	D	В		В	D		D	С		D	D	
Approach Delay		17.5			38.6			31.9			36.0	
Approach LOS		В			D			С			D	

Area Type: Other

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Yellow

Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.88

Intersection Signal Delay: 31.6 Intersection LOS: C
Intersection Capacity Utilization 80.5% ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 13: Chester Ave & Opportunity Corridor

Appendix G: Synchro Analysis Results - Signalized Intersections (2020 PM Peak Hour)

Synchro Analysis – PM Peak Hour 2020 Build Condition

The roadway network established from HCS analyses was modeled using Synchro to determine operations with optimized signal coordination along the corridor for the AM and PM peak hours. However, it should be noted that within the University Circle area several of the corridors intersected by the proposed boulevard also have coordinated signal systems (i.e. Carnegie Avenue, Euclid Avenue, Chester Avenue, etc.). These corridors accommodate the predominant east-west traffic movements within University Circle. Therefore, the optimized timings developed as part of this Synchro analysis will have to be further evaluated based on city-wide signal coordination goals and further field adjusted to achieve optimal system performance.

Synchro results for the proposed boulevard indicate intersection levels of service range from LOS A to LOS D during the PM peak hour. The Carnegie and Euclid intersections each have movements that operate below acceptable levels.

At Carnegie Avenue, the eastbound through movement operates with a v/c ratio of 0.99. Operations for the eastbound through movement would improve with an additional eastbound through lane. However, this widening would create additional impacts. Widening of Carnegie could impact Cleveland Clinic owned structures west of E. 105th Street. East of E. 105th Street, the additional eastbound lane would impact the National Register of Historic Places (NRHP) listed Tudor Arms building. However, even with the high v/c ratio, both the eastbound through movement and the overall intersection operate at LOS D. Given the above, the incremental operational improvement provided by an additional through lane would not be justified given the magnitude of the resulting property impacts.

In addition, the northbound left turn movement at the Carnegie Avenue intersection operates at a LOS E with a delay of 68.7 seconds. The northbound left turn volume is low (50 vehicles). The operational concerns will be mitigated by providing a turn lane that is 325 feet. This will accommodate storage, deceleration, and taper for the left turning vehicles and some additional length for through back up (see **Section 3.3** in the main report text). In addition, there are several east-west roadways that intersect E. 105th Street and provide alternate routes. Based on the low northbound left volumes, the low v/c ratio (0.70), provided storage, and acceptable results from the HCS analyses, further changes to this intersection are not recommended.

At Euclid Avenue, the eastbound through movement operates with a v/c ratio of 0.92 and a LOS E with a delay of 60.6 seconds. Euclid Avenue currently operates as a Bus Rapid Transit (BRT) corridor. It was constructed in 2008 and creates a constraint when designing E. 105th Street to meet the operational requirements of the project. Synchro has limitations in modeling this intersection. To accommodate the protected bus movements, a "dummy" phase of 6.5 seconds was added to the eastbound and westbound left turn movements. This may have resulted in a conservative result. Furthermore, additional widening along Euclid Avenue would result in impacts to the BRT corridor that would substantially increase project costs.

The northbound left movement at Euclid Avenue also operates with a v/c ratio of 0.93 and a LOS F with a delay of 93.7. However, the northbound left turn volume is low (90 vehicles). Operational concerns will be mitigated by providing a turn lane that is 400 feet to accommodate storage, deceleration, taper, and through back up (see **Section 3.3**). In addition, there are several east-west roadways that intersect with E. 105th Street and provide alternate routes to Euclid Avenue. Given the limitations in the analysis methodology, the overall operation of the intersection (LOS D), the low NB turning volume, and the

provided NB storage, and the prohibitive impacts of additional eastbound lanes, further changes to this intersection are not recommended.

Synchro results for the PM peak hour are included within this Appendix.

	•	•	†	~	>	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ኝ	7	† 1>		ሻ	^
Volume (vph)	120	120	240	170	240	1290
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	440	0	1700	0	400	1 700
Storage Lanes	440	1		0	400	
	-					
Taper Length (ft)	25	25	0.05	25	25	0.05
Lane Util. Factor	1.00	1.00	0.95	0.95	1.00	0.95
Frt	0.050	0.850	0.938		0.050	
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1711	1531	3209	0	1711	3421
Flt Permitted	0.950				0.448	
Satd. Flow (perm)	1711	1531	3209	0	807	3421
Right Turn on Red		No		No		
Satd. Flow (RTOR)						
Link Speed (mph)	25		35			35
Link Distance (ft)	714		708			1413
Travel Time (s)	19.5		13.8			27.5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	130	130	261	185	261	1402
Shared Lane Traffic (%)	130	130	201	100	201	1402
Lane Group Flow (vph)	130	130	446	0	261	1402
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	22		11			11
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1	1	1		1	1
Detector Template	Left	Right	Thru		Left	Thru
Leading Detector (ft)	35	35	35		35	35
Trailing Detector (ft)	0	0	0		0	0
Detector 1 Position(ft)	0	0	0		0	0
	35	35	35		35	35
Detector 1 Size(ft)						
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex
Detector 1 Channel		0.0	0.0			2.2
Detector 1 Extend (s)	0.0	0.0	0.0		0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0		0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0		0.0	0.0
Turn Type		pm+ov			pm+pt	
Protected Phases	8	1	2		1	6
Permitted Phases		8			6	
Detector Phase	8	1	2		1	6
Switch Phase						
Minimum Initial (s)	6.0	6.0	6.0		6.0	6.0
Minimum Split (s)	31.0	11.0	29.0		11.0	11.0
Total Split (s)	33.0	20.0	47.0	0.0	20.0	67.0
	33.0%	20.0%	47.0%	0.0%		67.0%
Total Split (%)	აა.U%	ZU.U%	47.0%	U.U%	20.0%	07.0%

	€	•	†		-	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Maximum Green (s)	28.0	15.0	42.0		15.0	62.0
Yellow Time (s)	3.5	3.5	3.5		3.5	3.5
All-Red Time (s)	1.5	1.5	1.5		1.5	1.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	4.0	5.0	5.0
Lead/Lag		Lead	Lag		Lead	
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0
Recall Mode	None	None	C-Max		None	C-Max
Walk Time (s)	7.0		7.0			
Flash Dont Walk (s)	19.0		17.0			
Pedestrian Calls (#/hr)	8		8			
Act Effct Green (s)	14.5	29.9	60.1		75.5	75.5
Actuated g/C Ratio	0.14	0.30	0.60		0.76	0.76
v/c Ratio	0.52	0.28	0.23		0.37	0.54
Control Delay	46.4	17.5	11.4		6.1	7.0
Queue Delay	0.0	0.0	0.0		0.0	0.0
Total Delay	46.4	17.5	11.4		6.1	7.0
LOS	D	В	В		Α	Α
Approach Delay	31.9		11.4			6.9
Approach LOS	С		В			А
Intersection Summary						

Area Type: Other

Cycle Length: 100 Actuated Cycle Length: 100

Offset: 62 (62%), Referenced to phase 2:NBT and 6:SBTL, Start of Yellow

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.54

Intersection Signal Delay: 10.5 Intersection LOS: B
Intersection Capacity Utilization 50.6% ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 1: Quadrant & E. 55th St

	-	•	•	←	1	~
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	*	LDI	ሻ	↑ ↑	ሻሻ	T T
Volume (vph)	1250	160	80	1220	230	180
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	1700	0	625	1700	300	0
Storage Lanes		0	1		2	1
Taper Length (ft)		25	25		25	25
Lane Util. Factor	0.91	0.91	1.00	0.95	0.97	1.00
Frt	0.91	0.71	1.00	0.70	0.77	0.850
FIt Protected	0.703		0.950		0.950	0.050
Satd. Flow (prot)	4832	0	1711	3421	3319	1531
Flt Permitted	4032	U	0.120	3421	0.950	1001
	4022	0		2421		1501
Satd. Flow (perm)	4832	0	216	3421	3319	1531
Right Turn on Red		No				No
Satd. Flow (RTOR)	0.5			0.5	25	
Link Speed (mph)	35			35	25	
Link Distance (ft)	1145			1919	714	
Travel Time (s)	22.3			37.4	19.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	1359	174	87	1326	250	196
Shared Lane Traffic (%)						
Lane Group Flow (vph)	1533	0	87	1326	250	196
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	11			11	22	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed (mph)	1.01	9	1.04	1.07	1.04	9
Number of Detectors	1	7	13	1	1	1
Detector Template	Thru		Left	Thru	Left	
						Right
Leading Detector (ft)	35		35	35	35	35
Trailing Detector (ft)	0		0	0	0	0
Detector 1 Position(ft)	0		0	0	0	0
Detector 1 Size(ft)	35		35	35	35	35
Detector 1 Type	CI+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel						
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	0.0
Turn Type			pm+pt			pm+ov
Protected Phases	2		1	6	4	1
Permitted Phases			6			4
Detector Phase	2		1	6	4	1
Switch Phase				- 3		
Minimum Initial (s)	6.0		6.0	6.0	6.0	6.0
Minimum Split (s)	32.0		11.0	11.0	11.0	11.0
Total Split (s)	58.0	0.0	20.0	78.0	22.0	20.0
Total Split (%)	58.0%	0.0%	20.0%	78.0%	22.0%	20.0%

	-	•	•	•		
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Maximum Green (s)	53.0		15.0	73.0	17.0	15.0
Yellow Time (s)	3.5		3.5	3.5	3.5	3.5
All-Red Time (s)	1.5		1.5	1.5	1.5	1.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	4.0	5.0	5.0	5.0	5.0
Lead/Lag	Lead		Lag			Lag
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Recall Mode	C-Max		None	C-Max	None	None
Walk Time (s)	7.0					
Flash Dont Walk (s)	20.0					
Pedestrian Calls (#/hr)	8					
Act Effct Green (s)	57.2		77.2	77.2	12.8	32.8
Actuated g/C Ratio	0.57		0.77	0.77	0.13	0.33
v/c Ratio	0.55		0.22	0.50	0.59	0.39
Control Delay	14.7		16.0	10.3	41.4	23.9
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	14.7		16.0	10.3	41.4	23.9
LOS	В		В	В	D	С
Approach Delay	14.7			10.7	33.7	
Approach LOS	В			В	С	
Intersection Summary						
Area Type:	Other					
Cycle Length: 100						
Actuated Cycle Length: 1	00					
Offset: 6 (6%), Reference	ed to phase 2:E	EBT and	6:WBTL,	Start of Y	'ellow	
Natural Cycle: 55						
Control Type: Actuated-C	Coordinated					

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.59

Intersection Signal Delay: 15.5 Intersection LOS: B
Intersection Capacity Utilization 51.8% ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 2: Opportunity Corridor & Quadrant

	۶	→	•	•	←	•	•	†	~	/	ļ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተተኈ		ሻ	↑ ↑		ሻ	↑ ↑		*	↑ ↑	
Volume (vph)	10	1160	250	10	1160	10	130	230	10	10	250	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	290		0	340		0	390		0	220		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	25		25	25		25	25		25	25		25
Lane Util. Factor	1.00	0.91	0.91	1.00	0.95	0.95	1.00	0.95	0.95	1.00	0.95	0.95
Frt		0.973			0.999			0.994			0.994	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1711	4783	0	1711	3418	0	1711	3401	0	1711	3401	0
Flt Permitted	0.155			0.125			0.374			0.591		
Satd. Flow (perm)	279	4783	0	225	3418	0	673	3401	0	1064	3401	0
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		1919			2120			705			713	
Travel Time (s)		37.4			41.3			13.7			13.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	11	1261	272	11	1261	11	141	250	11	11	272	11
Shared Lane Traffic (%)												
Lane Group Flow (vph)	11	1533	0	11	1272	0	141	261	0	11	283	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		24			24	<u> </u>		11			11	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1		1	1		1	1		1	1	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	35	35		35	35		35	35		35	35	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	35	35		35	35		35	35		35	35	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Turn Type	Perm			Perm			pm+pt			Perm		
Protected Phases		2			6		3	8			4	
Permitted Phases	2			6			8	8		4		
Detector Phase	2	2		6	6		3	8		4	4	
Switch Phase												
Minimum Initial (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Minimum Split (s)	32.0	32.0		32.0	32.0		12.0	36.0		36.0	36.0	
Total Split (s)	52.0	52.0	0.0	52.0	52.0	0.0	12.0	48.0	0.0	36.0	36.0	0.0
Total Split (%)	52.0%	52.0%	0.0%	52.0%	52.0%	0.0%	12.0%	48.0%	0.0%	36.0%	36.0%	0.0%
·· · · · · · · · · · · · · · · · · · ·	. = . 7 , 0		,		•				2.2.0			

	•	-	•	•	←	•	4	†	/	>	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Maximum Green (s)	47.0	47.0		47.0	47.0		7.0	43.0		31.0	31.0	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.5	1.5		1.5	1.5		1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0
Lead/Lag							Lead			Lag	Lag	
Lead-Lag Optimize?							Yes					
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	C-Max	C-Max		C-Max	C-Max		None	None		None	None	
Walk Time (s)	7.0	7.0		7.0	7.0			7.0		7.0	7.0	
Flash Dont Walk (s)	20.0	20.0		20.0	20.0			24.0		24.0	24.0	
Pedestrian Calls (#/hr)	8	8		8	8			8		8	8	
Act Effct Green (s)	61.6	61.6		61.6	61.6		28.4	28.4		16.4	16.4	
Actuated g/C Ratio	0.62	0.62		0.62	0.62		0.28	0.28		0.16	0.16	
v/c Ratio	0.06	0.52		0.08	0.60		0.53	0.27		0.06	0.51	
Control Delay	8.7	8.1		3.2	3.8		34.1	27.3		31.2	40.1	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	8.7	8.1		3.2	3.8		34.1	27.3		31.2	40.1	
LOS	А	Α		Α	Α		С	С		С	D	
Approach Delay		8.1			3.8			29.7			39.8	
Approach LOS		А			Α			С			D	

Area Type: Other

Cycle Length: 100 Actuated Cycle Length: 100

Offset: 21 (21%), Referenced to phase 2:EBTL and 6:WBTL, Start of Yellow

Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.60

Intersection Signal Delay: 11.7 Intersection LOS: B
Intersection Capacity Utilization 59.3% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 3: Opportunity Corridor & Kinsman Rd

→ → ← ← ← ↑ + / → ↓	
Lane Group EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SE	SBR
Lane Configurations \(\bar{\bar{\bar{\bar{\bar{\bar{\bar{	•
Volume (vph) 40 1130 10 20 1150 10 10 20 20 10	
Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 190	1900
Storage Length (ft) 600 0 450 0 150 0 160	0
Storage Lanes 1 0 1 0 1 0 1	0
Taper Length (ft) 25 25 25 25 25 25 25	25
Lane Util. Factor 1.00 0.91 0.91 1.00 0.95 0.95 1.00 1.00 1.00 1.00 1.00	1.00
Frt 0.999 0.999 0.925 0.90)
Flt Protected 0.950 0.950 0.950 0.950	
Satd. Flow (prot) 1711 4911 0 1711 3418 0 1711 1666 0 1711 174	0
Flt Permitted 0.200 0.208 0.722 0.728	
Satd. Flow (perm) 360 4911 0 375 3418 0 1300 1666 0 1311 17-	0
Right Turn on Red No No No	No
Satd. Flow (RTOR)	
	·)
Link Distance (ft) 2120 925 700 7)
Travel Time (s) 41.3 18.0 19.1 21	
Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	0.92
Adj. Flow (vph) 43 1228 11 22 1250 11 11 22 22 11	11
Shared Lane Traffic (%)	
Lane Group Flow (vph) 43 1239 0 22 1261 0 11 44 0 11	0
Enter Blocked Intersection No No No No No No No No No No	No No
Lane Alignment Left Left Right Left Right Left Right Left Left Right Left Left Left Left Left Left Left Lef	Right
Median Width(ft) 24 24 11	
Link Offset(ft) 0 0)
Crosswalk Width(ft) 16 16 16)
Two way Left Turn Lane	
Headway Factor 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04	1.04
Turning Speed (mph) 15 9 15 9 15 9 15	9
Number of Detectors 1 1 1 1 1 1 1	
Detector Template Left Thru Left Thru Left Thru Left Th	l
Leading Detector (ft) 35 35 35 35 35)
Trailing Detector (ft) 0 0 0 0 0)
Detector 1 Position(ft) 0 0 0 0 0	
Detector 1 Size(ft) 35 35 35 35 35)
Detector 1 Type CI+Ex CI	(
Detector 1 Channel	
Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0)
Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
Turn Type Perm Perm Perm Perm	
Protected Phases 2 6 4	}
Permitted Phases 2 6 4 8	
Detector Phase 2 2 6 6 4 4 8	}
Switch Phase	
Minimum Initial (s) 6.0 6.0 6.0 6.0 6.0 6.0	
Minimum Split (s) 32.0 32.0 32.0 32.0 36.0 36.0 36.0 36.0	
Total Split (s) 64.0 64.0 0.0 64.0 0.0 36.0 36.0 36.0 36.0 36.0	
Total Split (%) 64.0% 64.0% 0.0% 64.0% 0.0% 36.0% 36.0% 36.0% 36.0% 36.0% 36.0%	

	•	→	•	•	←	•	1	†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Maximum Green (s)	59.0	59.0		59.0	59.0		31.0	31.0		31.0	31.0	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.5	1.5		1.5	1.5		1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	C-Max	C-Max		C-Max	C-Max		None	None		None	None	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	20.0	20.0		20.0	20.0		24.0	24.0		24.0	24.0	
Pedestrian Calls (#/hr)	8	8		8	8		8	8		8	8	
Act Effct Green (s)	80.7	80.7		80.7	80.7		12.5	12.5		12.5	12.5	
Actuated g/C Ratio	0.81	0.81		0.81	0.81		0.12	0.12		0.12	0.12	
v/c Ratio	0.15	0.31		0.07	0.46		0.07	0.21		0.07	0.25	
Control Delay	1.4	0.5		2.5	1.9		33.4	37.7		33.4	38.5	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	1.4	0.5		2.5	1.9		33.4	37.7		33.4	38.5	
LOS	Α	Α		Α	А		С	D		С	D	
Approach Delay		0.5			1.9			36.9			37.7	
Approach LOS		А			А			D			D	

Area Type: Other

Cycle Length: 100 Actuated Cycle Length: 100

Offset: 79 (79%), Referenced to phase 2:EBTL and 6:WBTL, Start of Yellow

Natural Cycle: 70

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.46

Intersection Signal Delay: 2.8 Intersection LOS: A Intersection Capacity Utilization 48.8% ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 4: Opportunity Corridor & E. 75th St

	٠	→	•	•	←	•	•	†	~	/	↓	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተተኈ		7	↑ ↑		ሻ	†	7	ሻ	f)	
Volume (vph)	40	950	180	210	1010	10	120	170	170	10	260	50
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	410		0	725		0	400		400	400		0
Storage Lanes	1		0	1		0	1		1	1		0
Taper Length (ft)	25		25	25		25	25		25	25		25
Lane Util. Factor	1.00	0.91	0.91	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.976			0.999				0.850		0.976	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1711	4798	0	1711	3418	0	1711	1801	1531	1711	1757	0
FIt Permitted	0.257			0.104			0.224			0.641		
Satd. Flow (perm)	463	4798	0	187	3418	0	403	1801	1531	1154	1757	0
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			25			25	
Link Distance (ft)		925			2311			781			663	
Travel Time (s)		18.0			45.0			21.3			18.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	43	1033	196	228	1098	11	130	185	185	11	283	54
Shared Lane Traffic (%)												
Lane Group Flow (vph)	43	1229	0	228	1109	0	130	185	185	11	337	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		24			24			11			11	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1		1	1		1	1	1	1	1	
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	
Leading Detector (ft)	35	35		35	35		35	35	35	35	35	
Trailing Detector (ft)	0	0		0	0		0	0	0	0	0	
Detector 1 Position(ft)	0	0		0	0		0	0	0	0	0	
Detector 1 Size(ft)	35	35		35	35		35	35	35	35	35	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Turn Type	Perm			pm+pt			pm+pt		pm+ov	Perm		
Protected Phases		2		1	6		7	4	1		8	
Permitted Phases	2			6			4		4	8		
Detector Phase	2	2		1	6		7	4	1	8	8	
Switch Phase												
Minimum Initial (s)	6.0	6.0		6.0	6.0		6.0	6.0	6.0	6.0	6.0	
Minimum Split (s)	32.0	32.0		11.0	32.0		11.0	36.0	11.0	36.0	36.0	
Total Split (s)	39.0	39.0	0.0	14.0	53.0	0.0	11.0	47.0	14.0	36.0	36.0	0.0
Total Split (%)	39.0%	39.0%	0.0%	14.0%	53.0%	0.0%	11.0%	47.0%	14.0%	36.0%	36.0%	0.0%

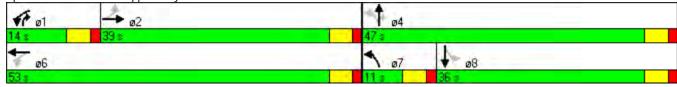
	ᄼ	→	•	•	←	•	•	†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Maximum Green (s)	34.0	34.0		9.0	48.0		6.0	42.0	9.0	31.0	31.0	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.5	1.5		1.5	1.5		1.5	1.5	1.5	1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	5.0	5.0	5.0	4.0
Lead/Lag	Lag	Lag		Lead			Lead		Lead	Lag	Lag	
Lead-Lag Optimize?							Yes			Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Recall Mode	C-Max	C-Max		None	C-Max		None	None	None	None	None	
Walk Time (s)	7.0	7.0			7.0			7.0		7.0	7.0	
Flash Dont Walk (s)	20.0	20.0			20.0			24.0		24.0	24.0	
Pedestrian Calls (#/hr)	8	8			8			8		8	8	
Act Effct Green (s)	36.1	36.1		54.8	54.8		35.2	35.2	53.9	24.2	24.2	
Actuated g/C Ratio	0.36	0.36		0.55	0.55		0.35	0.35	0.54	0.24	0.24	
v/c Ratio	0.26	0.71		0.73	0.59		0.59	0.29	0.22	0.04	0.79	
Control Delay	14.5	14.7		30.6	7.3		33.2	23.6	12.4	26.2	49.1	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay	14.5	14.7		30.6	7.3		33.2	23.6	12.4	26.2	49.1	
LOS	В	В		С	Α		С	С	В	С	D	
Approach Delay		14.7			11.3			22.0			48.4	
Approach LOS		В			В			С			D	

Area Type: Other

Cycle Length: 100 Actuated Cycle Length: 100

Offset: 72 (72%), Referenced to phase 2:EBTL and 6:WBTL, Start of Yellow

Natural Cycle: 90


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.79

Intersection Signal Delay: 17.8 Intersection LOS: B
Intersection Capacity Utilization 74.0% ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 5: Opportunity Corridor & E. 79th St

	ᄼ	→	\rightarrow	•	←	•	•	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ተተኈ		*	↑ ↑		ሻ	↑ ↑		ሻ	↑ ↑	
Volume (vph)	10	980	130	40	1140	10	70	550	220	10	650	10
	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	600		0	290		0	425		0	225		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	25		25	25		25	25		25	25		25
Lane Util. Factor	1.00	0.91	0.91	1.00	0.95	0.95	1.00	0.95	0.95	1.00	0.95	0.95
Frt		0.982			0.999			0.957			0.998	
Flt Protected (0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1711	4827	0	1711	3418	0	1711	3274	0	1711	3414	0
Flt Permitted (0.127			0.177			0.151			0.280		
Satd. Flow (perm)	229	4827	0	319	3418	0	272	3274	0	504	3414	0
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		2311			651			862			1038	
Travel Time (s)		45.0			12.7			16.8			20.2	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	11	1065	141	43	1239	11	76	598	239	11	707	11
Shared Lane Traffic (%)												
Lane Group Flow (vph)	11	1206	0	43	1250	0	76	837	0	11	718	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		24			24			11			11	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1		1	1		1	1		1	1	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	35	35		35	35		35	35		35	35	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	35	35		35	35		35	35		35	35	
Detector 1 Type (CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Turn Type	Perm			Perm			pm+pt			Perm		
Protected Phases		2			6		3	8			4	
Permitted Phases	2			6			8			4		
Detector Phase	2	2		6	6		3	8		4	4	
Switch Phase												
Minimum Initial (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Minimum Split (s)	32.0	32.0		32.0	32.0		12.0	36.0		36.0	36.0	
Total Split (s)	52.0	52.0	0.0	52.0	52.0	0.0	12.0	48.0	0.0	36.0	36.0	0.0
	52.0%	52.0%	0.0%	52.0%	52.0%	0.0%	12.0%	48.0%	0.0%	36.0%	36.0%	0.0%

	٠	-	\rightarrow	•	←	•	•	†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Maximum Green (s)	47.0	47.0		47.0	47.0		7.0	43.0		31.0	31.0	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.5	1.5		1.5	1.5		1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0
Lead/Lag							Lead			Lag	Lag	
Lead-Lag Optimize?							Yes					
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	C-Max	C-Max		C-Max	C-Max		None	None		None	None	
Walk Time (s)	7.0	7.0		7.0	7.0			7.0		7.0	7.0	
Flash Dont Walk (s)	20.0	20.0		20.0	20.0			24.0		24.0	24.0	
Pedestrian Calls (#/hr)	8	8		8	8			8		8	8	
Act Effct Green (s)	53.2	53.2		53.2	53.2		36.8	36.8		27.2	27.2	
Actuated g/C Ratio	0.53	0.53		0.53	0.53		0.37	0.37		0.27	0.27	
v/c Ratio	0.09	0.47		0.25	0.69		0.38	0.70		0.08	0.77	
Control Delay	6.3	5.3		14.5	13.4		24.5	29.6		27.3	39.8	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	6.3	5.3		14.5	13.4		24.5	29.6		27.3	39.8	
LOS	Α	Α		В	В		С	С		С	D	
Approach Delay		5.3			13.5			29.2			39.6	
Approach LOS		А			В			С			D	

Area Type: Other

Cycle Length: 100 Actuated Cycle Length: 100

Offset: 16 (16%), Referenced to phase 2:EBTL and 6:WBTL, Start of Yellow

Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.77

Intersection Signal Delay: 19.1 Intersection LOS: B
Intersection Capacity Utilization 73.0% ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 6: Opportunity Corridor & Buckeye Rd

	٠	→	•	•	+	•	4	†	~	/	ļ	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť	ተተ _ጉ		Ť	† }		ሻ	∱ }		ሻ	∱ }	
Volume (vph)	10	960	240	10	1170	80	110	180	10	50	200	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	315		0	650		0	375		0	225		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	25		25	25		25	25		25	25		25
Lane Util. Factor	1.00	0.91	0.91	1.00	0.95	0.95	1.00	0.95	0.95	1.00	0.95	0.95
Frt		0.970			0.990			0.992			0.993	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1711	4768	0	1711	3387	0	1711	3394	0	1711	3397	0
Flt Permitted	0.163			0.186			0.579			0.611		
Satd. Flow (perm)	294	4768	0	335	3387	0	1043	3394	0	1100	3397	0
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		651			1033			944			1183	
Travel Time (s)		12.7			20.1			18.4			23.0	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	11	1043	261	11	1272	87	120	196	11	54	217	11
Shared Lane Traffic (%)												
Lane Group Flow (vph)	11	1304	0	11	1359	0	120	207	0	54	228	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		24	J		24	J		11	J		11	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1		1	1		1	1		1	1	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	35	35		35	35		35	35		35	35	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	35	35		35	35		35	35		35	35	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Turn Type	Perm			Perm			Perm			Perm		
Protected Phases		2			6			8			4	
Permitted Phases	2	2		6			8			4		
Detector Phase	2	2		6	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Minimum Split (s)	32.0	32.0		32.0	32.0		36.0	36.0		36.0	36.0	
Total Split (s)	61.0	61.0	0.0	61.0	61.0	0.0	39.0	39.0	0.0	39.0	39.0	0.0
Total Split (%)	61.0%	61.0%	0.0%	61.0%	61.0%	0.0%	39.0%	39.0%	0.0%	39.0%	39.0%	0.0%

	•	→	•	•	←	•	4	†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Maximum Green (s)	56.0	56.0		56.0	56.0		34.0	34.0		34.0	34.0	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.5	1.5		1.5	1.5		1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	C-Max	C-Max		C-Max	C-Max		None	None		None	None	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	20.0	20.0		20.0	20.0		24.0	24.0		24.0	24.0	
Pedestrian Calls (#/hr)	8	8		8	8		8	8		8	8	
Act Effct Green (s)	72.3	72.3		72.3	72.3		17.7	17.7		17.7	17.7	
Actuated g/C Ratio	0.72	0.72		0.72	0.72		0.18	0.18		0.18	0.18	
v/c Ratio	0.05	0.38		0.05	0.56		0.65	0.34		0.28	0.38	
Control Delay	3.3	2.7		2.3	3.3		52.5	35.8		35.7	36.3	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	3.3	2.7		2.3	3.3		52.5	35.8		35.7	36.3	
LOS	Α	Α		Α	Α		D	D		D	D	
Approach Delay		2.7			3.3			41.9			36.2	
Approach LOS		Α			А			D			D	

Area Type: Other

Cycle Length: 100 Actuated Cycle Length: 100

Offset: 28 (28%), Referenced to phase 2:EBTL and 6:WBTL, Start of Yellow

Natural Cycle: 70

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.65

Intersection Signal Delay: 9.7 Intersection LOS: A Intersection Capacity Utilization 59.3% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 7: Opportunity Corridor & Woodland Ave

	۶	→	•	•	←	•	•	†	~	/	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ሻ	↑ ↑		7	†	7	7	†	7
Volume (vph)	230	780	10	130	930	10	10	360	180	10	430	320
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	460		0	500		0	190		190	290		240
Storage Lanes	1		1	1		0	1		1	1		1
Taper Length (ft)	25		25	25		25	25		25	25		25
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850		0.998				0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1711	3421	1531	1711	3414	0	1711	1801	1531	1711	1801	1531
Flt Permitted	0.131			0.333			0.171			0.274		
Satd. Flow (perm)	236	3421	1531	600	3414	0	308	1801	1531	493	1801	1531
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			30			25	
Link Distance (ft)		1033			2188			492			838	
Travel Time (s)		20.1			42.6			11.2			22.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	250	848	11	141	1011	11	11	391	196	11	467	348
Shared Lane Traffic (%)												
Lane Group Flow (vph)	250	848	11	141	1022	0	11	391	196	11	467	348
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		24	, i		24	, i		11	ŭ		11	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1		1	1	1	1	1	1
Detector Template	Left	Thru	Right	Left	Thru		Left	Thru	Right	Left	Thru	Right
Leading Detector (ft)	35	35	35	35	35		35	35	35	35	35	35
Trailing Detector (ft)	0	0	0	0	0		0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0		0	0	0	0	0	0
Detector 1 Size(ft)	35	35	35	35	35		35	35	35	35	35	35
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Turn Type	pm+pt		Perm	Perm			Perm		Perm	Perm		Perm
Protected Phases	5	2			6			8			4	
Permitted Phases	2		2	6			8		8	4		4
Detector Phase	5	2	2	6	6		8	8	8	4	4	4
Switch Phase												
Minimum Initial (s)	6.0	6.0	6.0	6.0	6.0		6.0	6.0	6.0	6.0	6.0	6.0
Minimum Split (s)	12.0	32.0	32.0	32.0	32.0		36.0	36.0	36.0	36.0	36.0	36.0
Total Split (s)	21.0	62.0	62.0	41.0	41.0	0.0	38.0	38.0	38.0	38.0	38.0	38.0
Total Split (%)	21.0%	62.0%	62.0%	41.0%	41.0%	0.0%	38.0%	38.0%	38.0%	38.0%	38.0%	38.0%
I 7												

	•	-	•	•	←	•		†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Maximum Green (s)	16.0	57.0	57.0	36.0	36.0		33.0	33.0	33.0	33.0	33.0	33.0
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5		3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5		1.5	1.5	1.5	1.5	1.5	1.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	4.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	Lead			Lag	Lag							
Lead-Lag Optimize?	Yes											
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	C-Max	C-Max	C-Max	C-Max		None	None	None	None	None	None
Walk Time (s)		7.0	7.0	7.0	7.0		7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)		20.0	20.0	20.0	20.0		24.0	24.0	24.0	24.0	24.0	24.0
Pedestrian Calls (#/hr)		8	8	8	8		8	8	8	8	8	8
Act Effct Green (s)	60.1	60.1	60.1	41.6	41.6		29.9	29.9	29.9	29.9	29.9	29.9
Actuated g/C Ratio	0.60	0.60	0.60	0.42	0.42		0.30	0.30	0.30	0.30	0.30	0.30
v/c Ratio	0.73	0.41	0.01	0.56	0.72		0.12	0.73	0.43	0.07	0.87	0.76
Control Delay	24.8	11.5	7.6	33.7	27.8		27.5	39.5	30.6	24.9	50.4	43.0
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	24.8	11.5	7.6	33.7	27.8		27.5	39.5	30.6	24.9	50.4	43.0
LOS	С	В	Α	С	С		С	D	С	С	D	D
Approach Delay		14.5			28.5			36.4			46.9	
Approach LOS		В			С			D			D	

Area Type: Other

Cycle Length: 100 Actuated Cycle Length: 100

Offset: 81 (81%), Referenced to phase 2:EBTL and 6:WBTL, Start of Yellow

Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.87

Intersection Signal Delay: 29.7 Intersection LOS: C
Intersection Capacity Utilization 73.9% ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 8: Opportunity Corridor & E. 93rd St

	•	•	4	†	ļ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	T T	₹ T	NDL 7	^	†	SDIC
Volume (vph)	10	10	90	870	1050	20
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	100	0	100	1700	1700	600
Storage Lanes	100	1	100			000
Taper Length (ft)	25	25	25			25
Lane Util. Factor	1.00	1.00	1.00	0.95	0.95	0.95
Frt	1.00	0.850	1.00	0.73	0.997	0.75
Flt Protected	0.950	0.000	0.950		0.771	
Satd. Flow (prot)	1711	1531	1711	3421	3411	0
Flt Permitted	0.950	1331	0.231	J4Z I	3411	U
	1711	1531	416	3421	3411	0
Satd. Flow (perm)	1/11		410	3421	3411	
Right Turn on Red		No				No
Satd. Flow (RTOR)	٦٢			25	20	
Link Speed (mph)	35			35	30	
Link Distance (ft)	1147			2188	1451	
Travel Time (s)	22.3	0.00	0.00	42.6	33.0	0.00
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	11	11	98	946	1141	22
Shared Lane Traffic (%)						
Lane Group Flow (vph)	11	11	98	946	1163	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	11			12	11	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane					Yes	
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed (mph)	15	9	15			9
Number of Detectors	1	1	1	1	1	
Detector Template	Left	Right	Left	Thru	Thru	
Leading Detector (ft)	35	35	35	35	35	
Trailing Detector (ft)	0	0	0	0	0	
Detector 1 Position(ft)	0	0	0	0	0	
Detector 1 Size(ft)	35	35	35	35	35	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel	OITEX	OHLA	OHLA	OHLX	OFFER	
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	
3 . ,	0.0			0.0	0.0	
Turn Type Protected Phases		custom	Perm	2		
Protected Phases	A	A	2	2	6	
Permitted Phases	4	4	2	2	,	
Detector Phase	4	4	2	2	6	
Switch Phase						
Minimum Initial (s)	6.0	6.0	6.0	6.0	6.0	
Minimum Split (s)	32.0	32.0	32.0	32.0	24.0	
Total Split (s)	32.0	32.0	68.0	68.0	68.0	0.0
Total Split (%)	32.0%	32.0%	68.0%	68.0%	68.0%	0.0%

	٠	•	4	†	ţ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Maximum Green (s)	27.0	27.0	63.0	63.0	63.0	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	4.0
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	C-Max	C-Max	C-Max	
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	
Flash Dont Walk (s)	20.0	20.0	20.0	20.0	11.0	
Pedestrian Calls (#/hr)	8	8	8	8	8	
Act Effct Green (s)	10.4	10.4	86.0	86.0	86.0	
Actuated g/C Ratio	0.10	0.10	0.86	0.86	0.86	
v/c Ratio	0.06	0.07	0.27	0.32	0.40	
Control Delay	35.8	36.1	7.3	3.6	3.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	35.8	36.1	7.3	3.6	3.6	
LOS	D	D	Α	Α	А	
Approach Delay	35.9			3.9	3.6	
Approach LOS	D			Α	Α	
Intersection Summary						
Area Type:	Other					
Cycle Length: 100						
Actuated Cycle Length: 1	00					
Offset: 45 (45%), Referen		2:NBTL	and 6:SB	T, Start o	f Yellow	
Natural Cycle: 70	,					
Control Type: Actuated-C	Coordinated					

Maximum v/c Ratio: 0.40

Intersection Signal Delay: 4.0 Intersection Capacity Utilization 52.2% Intersection LOS: A ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 9: Quincy Ave &

	ၨ	→	\rightarrow	•	←	•	4	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	∱ }		ሻ	f)		*	ተተኈ		ሻ	↑ ↑	
Volume (vph)	90	250	40	140	170	70	20	500	310	60	840	50
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	255		0	350		0	600		0	325		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	25		25	25		25	25		25	25		25
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00	1.00	0.91	0.91	1.00	0.95	0.95
Frt		0.980			0.956			0.943			0.992	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1711	3353	0	1711	1721	0	1711	4636	0	1711	3394	0
Flt Permitted	0.598			0.341			0.247			0.293		
Satd. Flow (perm)	1077	3353	0	614	1721	0	445	4636	0	528	3394	0
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			30			35	
Link Distance (ft)		1015			1164			668			652	
Travel Time (s)		19.8			22.7			15.2			12.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	98	272	43	152	185	76	22	543	337	65	913	54
Shared Lane Traffic (%)												
Lane Group Flow (vph)	98	315	0	152	261	0	22	880	0	65	967	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		11			11			11			11	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		Yes						Yes			Yes	
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1		1	1		1	1		1	1	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	35	35		35	35		35	35		35	35	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	35	35		35	35		35	35		35	35	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Turn Type	Perm			pm+pt			Perm			Perm		
Protected Phases		4		3	8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		3	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Minimum Split (s)	32.0	32.0		12.0	32.0		24.0	24.0		32.0	32.0	
Total Split (s)	36.0	36.0	0.0	12.0	48.0	0.0	52.0	52.0	0.0	52.0	52.0	0.0
	36.0%	36.0%	0.0%	12.0%	48.0%	0.0%	52.0%	52.0%	0.0%	52.0%	52.0%	0.0%

	•	→	•	•	•	•	•	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Maximum Green (s)	31.0	31.0		7.0	43.0		47.0	47.0		47.0	47.0	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.5	1.5		1.5	1.5		1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	
Walk Time (s)	7.0	7.0			7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	20.0	20.0			20.0		11.0	11.0		20.0	20.0	
Pedestrian Calls (#/hr)	8	8			8		8	8		8	8	
Act Effct Green (s)	16.6	16.6		28.6	28.6		61.4	61.4		61.4	61.4	
Actuated g/C Ratio	0.17	0.17		0.29	0.29		0.61	0.61		0.61	0.61	
v/c Ratio	0.55	0.57		0.60	0.53		0.08	0.31		0.20	0.46	
Control Delay	48.5	41.6		37.5	33.3		11.7	15.2		11.5	10.4	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	48.5	41.6		37.5	33.3		11.7	15.2		11.5	10.4	
LOS	D	D		D	С		В	В		В	В	
Approach Delay		43.2			34.8			15.1			10.4	
Approach LOS		D			С			В			В	

Area Type: Other

Cycle Length: 100 Actuated Cycle Length: 100

Offset: 2 (2%), Referenced to phase 2:NBTL and 6:SBTL, Start of Yellow

Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.60

Intersection Signal Delay: 20.5 Intersection LOS: C
Intersection Capacity Utilization 64.7% ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 10: Cedar Ave & Opportunity Corridor

	ᄼ	→	•	•	←	•	4	†	~	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	, j	∱ }		Ť	^	7	ň	ተተኈ		7	↑ ↑	
Volume (vph)	70	1390	10	150	770	60	50	580	50	80	750	40
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	625		0	250		640	150		0	500		0
Storage Lanes	1		0	1		1	1		0	1		0
Taper Length (ft)	25		25	25		25	25		25	25		25
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	1.00	1.00	0.91	0.91	1.00	0.95	0.95
Frt		0.999				0.850		0.988			0.992	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1711	3418	0	1711	3421	1531	1711	4857	0	1711	3394	0
Flt Permitted	0.337			0.080			0.137			0.305		
Satd. Flow (perm)	607	3418	0	144	3421	1531	247	4857	0	549	3394	0
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		1245			1288			652			918	
Travel Time (s)		24.3			25.1			12.7			17.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	76	1511	11	163	837	65	54	630	54	87	815	43
Shared Lane Traffic (%)												
Lane Group Flow (vph)	76	1522	0	163	837	65	54	684	0	87	858	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		11			11			11			11	
Link ffset(ft)	0	0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		Yes			Yes			Yes			Yes	
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number f Detectors	1	1		1	1	1	1	1		1	1	
Detector Template	Left	Thru		Left	Thru	Right	Left	Thru		Left	Thru	
Leading Detector (ft)	35	35		35	35	35	35	35		35	35	
Trailing etectorDft) (0	0		0	0	0	0	0		0	0	
Detector Position(ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Size(ft)	35	35		35	35	35	35	35		35	35	
Detector 1 Type	CI+Ex	Cl+Ex		CI+Ex	CI+Ex	Cl+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Turn Type	Perm			pm+pt		Perm	Perm			Perm		
Protected Phases		4		3	8			2			6	
Permitted Phases	4			8		8	2			6		
Detector hase P	4	4		3	8	8	2	2		6	6	
Switch Phase												
Minimum Initial (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0		6.0	6.0	
Minimum Split (s)	32.0	32.0		12.0	32.0	32.0	36.0	36.0		32.0	32.0	
Total Split (s)	49.1	49.1	0.0	14.9	64.0	64.0	36.0	36.0	0.0	36.0	36.0	0.0
Total Split (%)	49.1%	49.1%	0.0%	14.9%	64.0%	64.0%	36.0%	36.0%	0.0%	36.0%	36.0%	0.0%

	۶	-	•	•	•	•	•	†	1	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Maximum Green (s)	44.1	44.1		9.9	59.0	59.0	31.0	31.0		31.0	31.0	
Yellow Time (s)	3.5	3.5		3.5	3.5	3.5	3.5	3.5		3.5	3.5	
All-Red Time (s)	1.5	1.5		1.5	1.5	1.5	1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	4.0	5.0	5.0	5.0	5.0	5.0	4.0	5.0	5.0	4.0
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?				Yes								
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None	None	C-Max	C-Max		C-Max	C-Max	
Walk Time (s)	7.0	7.0			7.0	7.0	7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	20.0	20.0			20.0	20.0	24.0	24.0		20.0	20.0	
Pedestrian alls (#/6r)	8	8			8	8	8	8		8	8	
Act Effct Green (s)	44.8	44.8		59.0	59.0	59.0	31.0	31.0		31.0	31.0	
Actuated g/C Ratio	0.45	0.45		0.59	0.59	0.59	0.31	0.31		0.31	0.31	
v/c Ratio	0.28	0.99		0.71	0.41	0.07	0.70	0.45		0.51	0.82	
Control Delay	21.4	50.1		35.5	11.9	9.1	68.7	20.1		49.9	47.0	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	21.4	50.1		35.5	11.9	9.1	68.7	20.1		49.9	47.0	
LOS	С	D		D	В	Α	Е	С		D	D	
Approach Delay		48.8			15.3			23.7			47.3	
Approach LOS		D			В			С			D	

Area Type: Other

Cycle Length: 100 Actuated Cycle Length: 100

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Yellow

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.99

Intersection Signal Delay: 36.0 Intersection LOS: D
Intersection Capacity Utilization 90.7% ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 11: Carnegie Ave & Opportunity Corridor

	۶	→	•	•	+	•	•	†	~	/	ţ	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	f)		Ť	f)		7	† †	7	ሻ	↑ ↑	
Volume (vph)	290	320	90	290	370	20	90	530	110	40	440	230
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	500		0	525		0	350		0	225		0
Storage Lanes	1		0	1		0	1		1	1		0
Taper Length (ft)	25		25	25		25	25		25	25		25
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	0.95
Frt		0.967			0.992				0.850		0.948	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1711	1741	0	1711	1786	0	1711	3421	1531	1711	3243	0
Flt Permitted	0.950		-	0.950	,,,,,,	-	0.197			0.299		
Satd. Flow (perm)	1711	1741	0	1711	1786	0	355	3421	1531	538	3243	0
Right Turn on Red			No			No		0.2.	No	000	02.0	No
Satd. Flow (RTOR)												
Link Speed (mph)		25			25			35			35	
Link Distance (ft)		1124			935			918			658	
Travel Time (s)		30.7			25.5			17.9			12.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	315	348	98	315	402	22	98	576	120	43	478	250
Shared Lane Traffic (%)	010	0.10	, 0	0.0	102		, ,	0,0	120	10	170	200
Lane Group Flow (vph)	315	446	0	315	424	0	98	576	120	43	728	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Lore	11	rtigiti	Lore	11	rugiii	Lon	11	rugiit	Loit	11	rtigrit
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane								Yes			Yes	
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1		1	1		1	1	1	1	1	
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	
Leading Detector (ft)	35	35		35	35		35	35	35	35	35	
Trailing Detector (ft)	0	0		0	0		0	0	0	0	0	
Detector 1 Position(ft)	0	0		0	0		0	0	0	0	0	
Detector 1 Size(ft)	35	35		35	35		35	35	35	35	35	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Turn Type	Prot			Prot			Perm		pm+ov	Perm		
Protected Phases	7	4		3	8			2	3		6	
Permitted Phases							2		2	6		
Detector Phase	7	4		3	8		2	2	3	6	6	
Switch Phase												
	6.0	6.0		6.0	6.0		6.0	6.0	6.0	6.0	6.0	
			0.0			0.0						0.0
	31.0%	37.0%	0.0%	31.0%		0.0%	32.0%	32.0%	31.0%	32.0%	32.0%	0.0%
Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%)	6.0 11.0 31.0 31.0%	6.0 37.0 37.0 37.0%	0.0 0.0%	6.0 11.0 31.0 31.0%	6.0 37.0 37.0 37.0%	0.0 0.0%	6.0 32.0 32.0 32.0%	6.0 32.0 32.0 32.0%	6.0 11.0 31.0 31.0%	6.0 32.0 32.0 32.0%	6.0 32.0 32.0 32.0%	0.0 0.0%

	•	→	•	•	←	•	4	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Maximum Green (s)	26.0	27.0		26.0	27.0		27.0	27.0	26.0	27.0	27.0	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.5	6.5		1.5	6.5		1.5	1.5	1.5	1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	10.0	4.0	5.0	10.0	4.0	5.0	5.0	5.0	5.0	5.0	4.0
Lead/Lag	Lead	Lag		Lead	Lag				Lead			
Lead-Lag Optimize?				Yes					Yes			
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None		None	None		C-Max	C-Max	None	C-Max	C-Max	
Walk Time (s)		7.0			7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)		20.0			20.0		20.0	20.0		20.0	20.0	
Pedestrian Calls (#/hr)		8			8		8	8		8	8	
Act Effct Green (s)	22.4	28.0		22.4	28.0		29.6	29.6	57.0	29.6	29.6	
Actuated g/C Ratio	0.22	0.28		0.22	0.28		0.30	0.30	0.57	0.30	0.30	
v/c Ratio	0.82	0.92		0.82	0.85		0.93	0.57	0.14	0.27	0.76	
Control Delay	54.6	60.6		54.6	51.5		93.7	14.2	4.1	20.8	25.0	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay	54.6	60.6		54.6	51.5		93.7	14.2	4.1	20.8	25.0	
LOS	D	Е		D	D		F	В	Α	С	С	
Approach Delay		58.1			52.8			22.5			24.8	
Approach LOS		E			D			С			С	

Area Type: Other

Cycle Length: 100 Actuated Cycle Length: 100

Offset: 4 (4%), Referenced to phase 2:NBTL and 6:SBTL, Start of Yellow

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.93

Intersection Signal Delay: 39.2 Intersection LOS: D
Intersection Capacity Utilization 83.7% ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 12: Euclid Ave & Opportunity Corridor

	۶	→	•	•	+	•	•	†	~	/	ţ	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ተተ _ጉ		Ť	↑ ↑		7	↑ ↑		ሻ	↑ ↑	
Volume (vph)	90	1400	110	10	500	30	50	730	90	40	560	100
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	300		0	600		0	340		0	180		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	25		25	25		25	25		25	25		25
Lane Util. Factor	1.00	0.91	0.91	1.00	0.95	0.95	1.00	0.95	0.95	1.00	0.95	0.95
Frt		0.989			0.991			0.984			0.977	
Flt Protected	0.950			0.950			0.950			0.950	• • • • • • • • • • • • • • • • • • • •	
Satd. Flow (prot)	1711	4862	0	1711	3390	0	1711	3367	0	1711	3343	0
Flt Permitted	0.285	.002	J	0.118	0070	J	0.303	0007	Ū	0.223	00.0	
Satd. Flow (perm)	513	4862	0	212	3390	0	546	3367	0	402	3343	0
Right Turn on Red	0.0	.002	No		0070	No	0.0	0007	No	.02	00.0	No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		1230			1070			658			1379	
Travel Time (s)		24.0			20.8			12.8			26.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	98	1522	120	11	543	33	54	793	98	43	609	109
Shared Lane Traffic (%)	,,	1022	120		0.10	00	0.	,,,	, 0	10	007	107
Lane Group Flow (vph)	98	1642	0	11	576	0	54	891	0	43	718	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Lore	11	rtigiti	Lore	11	rugiii	Lon	11	rugin	Loit	11	rtigin
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane								Yes				
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1		1	1		1	1		1	1	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	35	35		35	35		35	35		35	35	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	35	35		35	35		35	35		35	35	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Turn Type	pm+pt			Perm			Perm			Perm		
Protected Phases	7	4			8			2			6	
Permitted Phases	4			8			2			6		
		4			8			2			6	
	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
			0.0			0.0			0.0			0.0
	11.0%	52.0%	0.0%	41.0%	41.0%	0.0%	48.0%	48.0%	0.0%	48.0%	48.0%	0.0%
Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%)	6.0 11.0 11.0	6.0 32.0 52.0 52.0%	0.0 0.0%	6.0 32.0 41.0	6.0 32.0 41.0 41.0%	0.0 0.0%	6.0 32.0 48.0	6.0 32.0 48.0 48.0%	0.0 0.0%	6.0 32.0 48.0	6.0 32.0 48.0 48.0%	0.0

	•	→	•	•	←	•	4	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Maximum Green (s)	6.0	47.0		36.0	36.0		43.0	43.0		43.0	43.0	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.5	1.5		1.5	1.5		1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0
Lead/Lag	Lead			Lag	Lag							
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	
Walk Time (s)		7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)		20.0		20.0	20.0		20.0	20.0		20.0	20.0	
Pedestrian Calls (#/hr)		8		8	8		8	8		8	8	
Act Effct Green (s)	42.7	42.7		33.9	33.9		47.3	47.3		47.3	47.3	
Actuated g/C Ratio	0.43	0.43		0.34	0.34		0.47	0.47		0.47	0.47	
v/c Ratio	0.34	0.79		0.15	0.50		0.21	0.56		0.23	0.45	
Control Delay	19.6	27.8		28.8	28.1		16.6	16.7		21.4	19.5	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	19.6	27.8		28.8	28.1		16.6	16.7		21.4	19.5	
LOS	В	С		С	С		В	В		С	В	
Approach Delay		27.3			28.1			16.7			19.6	
Approach LOS		С			С			В			В	

Area Type: Other

Cycle Length: 100 Actuated Cycle Length: 100

Offset: 12 (12%), Referenced to phase 2:NBTL and 6:SBTL, Start of Yellow

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.79

Intersection Signal Delay: 23.5 Intersection LOS: C
Intersection Capacity Utilization 79.2% ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 13: Chester Ave & Opportunity Corridor

Appendix H: HCS Analysis Results - Freeway Segment and Ramp (2020 AM Peak Hour)

Phone: E-mail:		Fax:	
	Operational Ana	alysis	
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: Opportuni	I-77 S on ramp t I-77 S to merge 2020	w/ I-77 N ramp	ed Alternative: F-1
	Flow Inputs and	d Adjustments	
Volume, V Peak-hour factor, PHF		300 0.92	veh/h
Peak 15-min volume, v15 Trucks and buses Recreational vehicles		82 5 0	V % %
Terrain type: Grade		Level	8
Segment length Trucks and buses PCE, E Recreational vehicle PC		- 1.5 1.2	mi
Heavy vehicle adjustment Driver population factor	t, fHV	0.976 1.00	0.41
Flow rate, vp		167	pc/h/ln
	Speed Inputs ar	nd Adjustments	
Lane width Right-side lateral clea	rango	-	ft ft
Total ramp density, TRD Number of lanes, N Free-flow speed:		- 2 Measured	ramps/mi
FFS or BFFS Lane width adjustment,		55.0	mi/h mi/h
Lateral clearance adjus TRD adjustment Free-flow speed, FFS	tment, fLC	- - 55.0	mi/h mi/h mi/h
	LOS and Perform	nance Measures	
Flow rate, vp		167	pc/h/ln
Free-flow speed, FFS Average passenger-car s Number of lanes, N	peed, S	55.0 55.0 2	mi/h mi/h
Dengity D		2 0	ng/mi/ln

pc/mi/ln

3.0

Α

Density, D

Phone: E-mail:		Fax:	
	Operational A	nalysis	
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year:	I-77 N on ramp I-77 N to merg 2020	e w/ I-77 S ramp	
Description: Opportun	ity Corridor Rec	ommended Preferr	ed Alternative: F-2
	Flow Inputs a	nd Adjustments	
Volume, V Peak-hour factor, PHF Peak 15-min volume, v1	5	700 0.92 190	veh/h
Trucks and buses	5	5	۷ ۶
Recreational vehicles Terrain type:		0 Level	ફ
Grade Segment length		- -	% mi
Trucks and buses PCE, Recreational vehicle Personal vehicle adjustment Driver population factors of the Power Population Records of the Power Population Flow Population Records of the Power Population Populati	CE, ER nt, fHV	1.5 1.2 0.976 1.00 390	pc/h/ln
riow race, vp			_
	Speed Inputs	and Adjustments_	
Lane width Right-side lateral cle	arance	-	ft ft
Total ramp density, TR: Number of lanes, N Free-flow speed:		- 2 Measured	ramps/mi
FFS or BFFS Lane width adjustment, Lateral clearance adju		55.0 - -	mi/h mi/h mi/h
TRD adjustment Free-flow speed, FFS		- 55.0	mi/h mi/h
	LOS and Perfo	rmance Measures_	
Flow rate, vp		390	pc/h/ln
Free-flow speed, FFS	and a	55.0	mi/h
Average passenger-car Number of lanes, N Density, D	speed, S	55.0 2 7.1	mi/h pc/mi/ln
Level of service LOS		7\	_

Α

Level of service, LOS

Phone: E-mail:		Fax:	
	Operational Analy	sis	
Analysis Time Period:	I-77 on ramp to I- N/S ramp merge to 2020	I-490E	Alternative: F-3
	Flow Inputs and A	djustments	
Volume, V Peak-hour factor, PHF		1000 0.92	veh/h
Peak 15-min volume, v15 Trucks and buses		272 5	V % %
Recreational vehicles Terrain type: Grade		0 Level -	\$ %
Segment length Trucks and buses PCE, E		- 1.5	mi
Recreational vehicle PC: Heavy vehicle adjustment Driver population factor	t, fHV	1.2 0.976 1.00	
Flow rate, vp	-,	557	pc/h/ln
	Speed Inputs and	Adjustments	
Lane width		-	ft
Right-side lateral clea: Total ramp density, TRD Number of lanes, N Free-flow speed:	rance	- - 2 Measured	ft ramps/mi
FFS or BFFS Lane width adjustment,		55.0 -	mi/h mi/h
Lateral clearance adjusted TRD adjustment Free-flow speed, FFS	tment, fLC	- - 55.0	mi/h mi/h mi/h
2700a, 110	LOS and Performan		/ -
Flow rate, vp	:2 ::::::: 2 :::::::::::::::::::::::	557	pc/h/ln
Free-flow speed, FFS		55.0	mi/h
Average passenger-car spread Number of lanes, N	peed, S	55.0	mi/h

10.1

Density, D

Level of service, LOS

pc/mi/ln

Phone: E-mail:		Fax:	
	Operational A	nalysis	
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: Opportunit	I-490 EB I-77 off ramp	to I-77 on ramp ommended Preferr	ed Alternative: F-4
	Flow Inputs a	nd Adjustments	
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15	5	1560 0.92 424	veh/h v
Trucks and buses Recreational vehicles Terrain type:		6 0 Level	% %
Grade Segment length Trucks and buses PCE, I	ΣΤ	- - 1.5	% mi
Recreational vehicle PO Heavy vehicle adjustment Driver population factor	nt, fHV	1.2 0.971 1.00	
Flow rate, vp		873	pc/h/ln
	Speed Inputs	and Adjustments_	
Lane width Right-side lateral clea Total ramp density, TRI Number of lanes, N Free-flow speed: FFS or BFFS		- - - 2 Measured 65.0	ft ft ramps/mi mi/h
Lane width adjustment, Lateral clearance adjustment TRD adjustment Free-flow speed, FFS		- - - 65.0	mi/h mi/h mi/h mi/h
	LOS and Perfo	rmance Measures_	
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D	speed, S	873 65.0 65.0 2 13.4	pc/h/ln mi/h mi/h pc/mi/ln
Torrol of gorraigo TOS		D	=

В

Phone: E-mail:		Fax:	
	Operational Ana	lysis	
Analysis Time Period:	I-77 SB on Ramp from I-490 WB to		d Alternative: F-5
	Flow Inputs and	Adjustments	
Volume, V Peak-hour factor, PHF		1380 0.94	veh/h
Peak 15-min volume, v15		367	V
Trucks and buses		5	%
Recreational vehicles		0	%
Terrain type:		Level	
Grade		-	%
Segment length		-	mi
Trucks and buses PCE, E		1.5	
Recreational vehicle PC		1.2	
Heavy vehicle adjustmen		0.976	
Driver population factor Flow rate, vp	or, ip	1.00 752	pc/h/ln
Tiow race, vp			_
	Speed Inputs and	d Adjustments	
Lane width		-	ft
Right-side lateral clea		_	ft
Total ramp density, TRD		_	ramps/mi
Number of lanes, N		2	
Free-flow speed:		Measured	4 / le
FFS or BFFS	£TW	65.0	mi/h
Lane width adjustment, Lateral clearance adjus		_	mi/h mi/h
TRD adjustment	cuienc, inc	_	mi/h
Free-flow speed, FFS		65.0	mi/h
-	LOS and Performa	ance Meagures	
Flow rate, vp		752	pc/h/ln
Free-flow speed, FFS	1 0	65.0	mi/h
Average passenger-car s	peed, S	65.0	mi/h
Number of lanes, N		2	4 1 43

11.6 pc/mi/ln

Density, D

Phone: E-mail:		Fax:	
	Operational Ar	nalysis	
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: Opportun	I-77 SB on Ramp from I-490 WB t	co I-77 SB	ed Alternative: F-6
	Flow Inputs ar	nd Adjustments	
Volume, V		880	veh/h
Peak-hour factor, PHF Peak 15-min volume, v1	5	0.94 234	V
Trucks and buses		5	00
Recreational vehicles		0	ે
Terrain type:		Level	
Grade		_	%
Segment length		=	mi
Trucks and buses PCE,		1.5	
Recreational vehicle Po		1.2	
Heavy vehicle adjustmen		0.976	
Driver population factor Flow rate, vp	or, ip	1.00 480	pc/h/ln
_			-
	Speed Inputs a	and Adjustments	
Lane width		-	ft
Right-side lateral clea		_	ft
Total ramp density, TR	D	_	ramps/mi
Number of lanes, N		2	
Free-flow speed:		Measured	mi/h
FFS or BFFS Lane width adjustment,	f T W	55.0	mi/h mi/h
Lateral clearance adjustment,		_	mi/h
TRD adjustment	Jemene, Ile	_	mi/h
Free-flow speed, FFS		55.0	mi/h
	LOS and Perfor	rmance Measures_	
Elow rate	_		
Flow rate, vp		480 55 0	pc/h/ln mi/h
Free-flow speed, FFS Average passenger-car	gneed S	55.0 55.0	mi/n mi/h
Number of lanes, N	speed, b	2	m1/11
TAMBEL OF TAILED, IN			

8.7

Α

pc/mi/ln

Density, D

Phone: E-mail:		Fax:	
	Operational Ar	alysis	
Analysis Time Period:	I-77 NB on Ramp from I-490 WB t	0 I-77 NB	ed Alternative: F-7
	Flow Inputs an	d Adjustments	
Volume, V		500	veh/h
Peak-hour factor, PHF	_	0.94	
Peak 15-min volume, v15		133	V
Trucks and buses Recreational vehicles		5 0	%
Terrain type:		Level	6
Grade		телет	8
Segment length		_	mi
Trucks and buses PCE, I	₹T	1.5	шт
Recreational vehicle Po		1.2	
Heavy vehicle adjustmen		0.976	
Driver population factor		1.00	
Flow rate, vp		273	pc/h/ln
	Speed Inputs a	nd Adjustments_	
Lane width		_	ft
Right-side lateral clea	arance	_	ft
Total ramp density, TRI		=	ramps/mi
Number of lanes, N		2	
Free-flow speed:		Measured	
FFS or BFFS	5	55.0	mi/h
Lane width adjustment,		_	mi/h
Lateral clearance adjus	stment, ILC	_	mi/h
TRD adjustment - mi/h			
Free-flow speed, FFS		55.0	mi/h
	LOS and Perfor	mance Measures_	
Flow rate, vp		273	pc/h/ln
Free-flow speed, FFS		55.0	mi/h
Average passenger-car	speed, S	55.0	mi/h
Number of lanes, N		2	

Α

pc/mi/ln

Density, D

Phone: E-mail:		Fax:	
	Operational Ar	nalysis	
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: Opportuni	I-490 WB I-77 off ramp t	_	ed Alternative: F-8
	Flow Inputs ar	nd Adjustments	
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E	T	830 0.94 221 5 0 Level - -	veh/h v % % % mi
Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	t, fHV	1.2 0.976 1.00 453	pc/h/ln
	Speed Inputs a	and Adjustments	
Lane width Right-side lateral clea Total ramp density, TRD Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	- - 2 Measured 70.0 - - - 70.0	ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h
rice flow speed, rrs		70.0	111711
	LOS and Perfor	rmance Measures	
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D	peed, S	453 70.0 70.0 2 6.5	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>

Phone: Fax: E-mail: _____Diverge Analysis_____ RAW Analyst: Agency/Co.: HNTB Date performed: 3/1/2012 Analysis time period: AM Peak Freeway/Dir of Travel: I-490 WB Junction: I-490 WB diverge to I-77 Jurisdiction: Analysis Year: 2020 Description: Opportunity Corridor Recommended Preferred Alternative: M-2 ______Freeway Data_____ Type of analysis Diverge Number of lanes in freeway Free-flow speed on freeway 65.0 mph Volume on freeway 830 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 60.0 mph 690 Volume on ramp vph Length of first accel/decel lane 500 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? No Volume on adjacent ramp vph Position of adjacent ramp Type of adjacent ramp Distance to adjacent ramp ft

Junction Components	Freeway	Ramp	Adjacent Ramp	
Volume, V (vph)	830	690		vph
Peak-hour factor, PHF	0.90	0.90		
Peak 15-min volume, v15	231	192		V
Trucks and buses	5	5		%
Recreational vehicles	0	0		%
Terrain type:	Level	Level		
Grade	0.00 %	0.00	%	%
Length	0.00 mi	0.00	mi	mi
Trucks and buses PCE, ET	1.5	1.5		

Recreational vehicle PCE, ER

______Conversion to pc/h Under Base Conditions_____

1.2

1.2

Space mean speed in outer lanes,

Space mean speed for all vehicles,

0.976 0.976 1.00 1.00 945 786

pcph

```
_____Estimation of V12 Diverge Areas__
                               (Equation 13-12 or 13-13)
                L =
                 ΕQ
                        0.700 Using Equation 5
                 FD
                v = v + (v - v) P = 897 pc/h
                    R
                          F R FD
                   _____Capacity Checks____
                                      Maximum
                                                    LOS F?
                         Actual
    v = v
                         945
                                      7050
                                                     No
     Fi F
                         159
                                      7050
                                                     No
    v = v - v
         F R
     FΟ
                         786
                                      2200
                                                     No
    V
     R
                         48 pc/h (Equation 13-14 or 13-17)
    v or v
     3
          av34
Is
    v or v
               > 2700 pc/h?
                                      No
     3
          av34
    v or v
                > 1.5 v / 2
                                      No
Is
     3
          av34
                       12
                                   (Equation 13-15, 13-16, 13-18, or 13-19)
If yes, v = 897
        12A
                    _Flow Entering Diverge Influence Area__
                                 Max Desirable
                                                      Violation?
                    Actual
                                 4400
                    897
                                                      No
    V
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 7.5 pc/mi/ln
Density,
                                        12
                      R
Level of service for ramp-freeway junction areas of influence A
                 _____Speed Estimation_____
                                         D = 0.174
Intermediate speed variable,
                                          S
Space mean speed in ramp influence area,
                                         S = 61.0
                                                      mph
                                          R
```

S = 71.3

S = 61.5

mph

mph

Appendix I: HCS Analysis Results - Freeway Segment and Ramp (2020 PM Peak Hour)

Phone: E-mail:		Fax:			
	Operational Anal	lysis			
Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year:					
	Flow Inputs and	Adjustments			
Volume, V Peak-hour factor, PHF		480 0.92	veh/h		
Peak 15-min volume, v15		130	V		
Trucks and buses		9	%		
Recreational vehicles		0	%		
Terrain type:		Level			
Grade		_	%		
Segment length		_	mi		
Trucks and buses PCE, E		1.5			
Recreational vehicle PC		1.2			
Heavy vehicle adjustmen		0.957			
Driver population factor Flow rate, vp	r, ip	1.00 273	pc/h/ln		
			_		
	Speed Inputs and	d Adjustments			
Lane width		_	ft		
Right-side lateral clea		_	ft		
Total ramp density, TRD	1	_	ramps/mi		
Number of lanes, N		2			
Free-flow speed:		Measured			
FFS or BFFS	ETU	55.0	mi/h		
Lane width adjustment, Lateral clearance adjus		-	mi/h mi/h		
TRD adjustment	tillelit, ILC	_	mi/h		
Free-flow speed, FFS		55.0	mi/h		
<u>.</u> ,	IOC and Dawfarms				
	LOS and Performa				
Flow rate, vp		273	pc/h/ln		
Free-flow speed, FFS		55.0	mi/h		
Average passenger-car s	peed, S	55.0	mi/h		
Number of lanes, N		2			

Α

pc/mi/ln

Density, D

Phone: E-mail:		Fax:			
	Operational A	nalysis			
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: Opportun					
	Flow Inputs a	nd Adjustments			
Volume, V Peak-hour factor, PHF	_	700 0.92	veh/h		
Peak 15-min volume, v1 Trucks and buses	5	190	V %		
Recreational vehicles		5 0	જ જ		
Terrain type:		Level	· ·		
Grade		_	9		
Segment length		_	mi		
Trucks and buses PCE,		1.5			
Recreational vehicle P		1.2			
Heavy vehicle adjustment Driver population fact		0.976 1.00			
Flow rate, vp	01, 15	390	pc/h/ln		
	Speed Inputs a	and Adjustments_			
Lane width		_	ft		
Right-side lateral cle	arance	_	ft		
Total ramp density, TR		_	ramps/mi		
Number of lanes, N		2			
Free-flow speed:		Measured			
FFS or BFFS	C	55.0	mi/h		
Lane width adjustment,		_	mi/h		
Lateral clearance adju TRD adjustment	stment, ILC	- -	mi/h mi/h		
Free-flow speed, FFS		55.0	mi/h		
	LOS and Perfo	rmance Measures_			
Flow rate, vp		390	pc/h/ln		
Free-flow speed, FFS		55.0	mi/h		
Average passenger-car	speed, S	55.0	mi/h		
Number of lanes, N		2			
Density, D		7.1	pc/mi/ln		
Level of service LOS		7\			

Α

Level of service, LOS

Phone: E-mail:		Fax:			
	Operational Ana	alysis			
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: Opportuni					
	Flow Inputs and	d Adjustments			
Volume, V		1180	veh/h		
Peak-hour factor, PHF Peak 15-min volume, v15		0.92 321	77		
Trucks and buses		9	V %		
Recreational vehicles		0	8		
Terrain type:		Level	·		
Grade		-	%		
Segment length		_	mi		
Trucks and buses PCE, E	T	1.5			
Recreational vehicle PC	E, ER	1.2			
Heavy vehicle adjustmen	it, fHV	0.957			
Driver population factor	or, fp	1.00			
Flow rate, vp		670	pc/h/ln		
	Speed Inputs a	nd Adjustments			
Lane width		-	ft		
Right-side lateral clea		-	ft		
Total ramp density, TRD)	_	ramps/mi		
Number of lanes, N		2			
Free-flow speed:		Measured			
FFS or BFFS	£ T.J.	55.0	mi/h		
Lane width adjustment, Lateral clearance adjus		_	mi/h mi/h		
TRD adjustment	cuienc, inc	_	mi/h		
Free-flow speed, FFS		55.0	mi/h		
	LOS and Perfor	mance Measures			
Flow rate					
Flow rate, vp Free-flow speed, FFS		670 55.0	pc/h/ln mi/h		
Average passenger-car s	speed. S	55.0	mi/h		
Number of lanes, N	peca, b	2	шт / 11		
		-			

pc/mi/ln

Density, D

Phone: E-mail:		Fax:	
	Operational Ana	lysis	
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: Opportuni	I-490 EB I-77 off ramp to		d Alternative: F-4
	Flow Inputs and	Adjustments	
Volume, V Peak-hour factor, PHF		820 0.92	veh/h
Peak 15-min volume, v15		223	V
Trucks and buses		4	%
Recreational vehicles		0	%
Terrain type:		Level	
Grade		_	8
Segment length	_	-	mi
Trucks and buses PCE, E		1.5	
Recreational vehicle PC		1.2	
Heavy vehicle adjustment Driver population factor		0.980 1.00	
Flow rate, vp	Ι, ΙΡ	455	pc/h/ln
	Speed Inputs and	d Adjustments	
Lane width		_	ft
Right-side lateral clea	rance	_	ft
Total ramp density, TRD		_	ramps/mi
Number of lanes, N		2	1 11 1
Free-flow speed:		Measured	
FFS or BFFS		65.0	mi/h
Lane width adjustment,	fLW	-	mi/h
Lateral clearance adjus	tment, fLC	-	mi/h
TRD adjustment		-	mi/h
Free-flow speed, FFS		65.0	mi/h
	LOS and Performa	ance Measures	
Flow rate, vp		455	pc/h/ln
Free-flow speed, FFS		65.0	mi/h
Average passenger-car s	peed, S	65.0	mi/h
Number of lanes, N		2	

Α

pc/mi/ln

Density, D

Phone: E-mail:		Fax:	
	Operational Ana	alysis	
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: Opportuni	I-77 SB on Ramp from I-490 WB to	o I-77	ed Alternative: F-5
	Flow Inputs and	d Adjustments	
Volume, V		1000	veh/h
Peak-hour factor, PHF		0.94 266	
Peak 15-min volume, v15 Trucks and buses		200 5	V %
Recreational vehicles		0	000
Terrain type:		Level	0
Grade		-	%
Segment length		_	mi
Trucks and buses PCE, E	lT	1.5	
Recreational vehicle PC		1.2	
Heavy vehicle adjustmen	nt, fHV	0.976	
Driver population factor	or, fp	1.00	
Flow rate, vp		545	pc/h/ln
	Speed Inputs a	nd Adjustments	
Lane width		_	ft
Right-side lateral clea		=	ft
Total ramp density, TRD)	_	ramps/mi
Number of lanes, N		2	
Free-flow speed:		Measured	. /3
FFS or BFFS	£ 7 7.7	65.0	mi/h
Lane width adjustment,		_	mi/h mi/h
Lateral clearance adjus TRD adjustment	stillent, ILC	_	mi/h
Free-flow speed, FFS		65.0	mi/h
	LOS and Perfor	mance Measures	
Flow rate			
Flow rate, vp Free-flow speed, FFS		545 65.0	pc/h/ln mi/h
Average passenger-car s	speed. S	65.0	mi/h
Number of lanes, N	peca, b	2	1111
- L			4 1 45

Α

pc/mi/ln

Density, D

Phone: E-mail:		Fax:	
	Operational An	alysis	
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: Opportuni	I-77 SB on Ramp from I-490 WB to 2020		ed Alternative: F-6
	Flow Inputs and	d Adjustments	
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15		740 0.94 197	veh/h v
Trucks and buses Recreational vehicles Terrain type:		5 0 Level	\$ 8
Grade Segment length Trucks and buses PCE, E		- - 1.5	% mi
Recreational vehicle PC Heavy vehicle adjustmen Driver population facto	E, ER t, fHV	1.2 0.976 1.00	
Flow rate, vp		403	pc/h/ln
	Speed Inputs a	nd Adjustments	
Lane width Right-side lateral clea Total ramp density, TRD Number of lanes, N Free-flow speed: FFS or BFFS		- - - 2 Measured 55.0	ft ft ramps/mi mi/h
Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS		- - - 55.0	mi/h mi/h mi/h mi/h
	LOS and Perfor	mance Measures	
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D	peed, S	403 55.0 55.0 2 7.3	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>

Phone: E-mail:		Fax:	
	Operational A	nalysis	
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: Opportuni	I-77 NB on Ram from I-490 WB	to I-77 NB	ed Alternative: F-7
	Flow Inputs a	nd Adjustments	
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15		260 0.94 69	veh/h v
Trucks and buses Recreational vehicles	,	5	v % %
Terrain type: Grade Segment length		Level - -	% mi
Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmer Driver population factor	EE, ER ht, fHV	1.5 1.2 0.976 1.00	
Flow rate, vp		142	pc/h/ln
	Speed Inputs	and Adjustments	
Lane width Right-side lateral clea Total ramp density, TRI Number of lanes, N Free-flow speed: FFS or BFFS		- - - 2 Measured 70.0	ft ft ramps/mi mi/h
Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS		- - - 70.0	mi/h mi/h mi/h mi/h
	LOS and Perfo	rmance Measures	
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D	speed, S	142 70.0 70.0 2 2.0	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>
Toxal of gazziga IOC		7\	-

Phone: E-mail:		Fax:	
	Operational A	nalysis	
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: Opportuni	2020	to I-77 on ramp ommended Preferre	d Alternative: F-8
	Flow Inputs a	nd Adjustments	
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type:		950 0.94 253 5 0 Level	veh/h v % %
Grade Segment length Trucks and buses PCE, Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	CE, ER nt, fHV	- 1.5 1.2 0.976 1.00 518	% mi pc/h/ln
	Speed Inputs	and Adjustments	
Lane width Right-side lateral clea Total ramp density, TRI Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus	fLW	- - 2 Measured 65.0 -	<pre>ft ft ramps/mi mi/h mi/h mi/h</pre>
TRD adjustment Free-flow speed, FFS		- 65.0	mi/h mi/h
rice from Speed, fro	LOS and Perfo	rmance Measures	
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N	speed, S	518 65.0 65.0 2	pc/h/ln mi/h mi/h
Density, D		8.0	pc/mi/ln

Phone: Fax: E-mail: _____Diverge Analysis_____ RAW Analyst: Agency/Co.: HNTB Date performed: 3/1/2012 Analysis time period: PM Peak Freeway/Dir of Travel: I-490 WB Junction: I-490 WB diverge to I-77 Jurisdiction: Analysis Year: 2020 Description: Opportunity Corridor Recommended Preferred Alternative: M-2 _____Freeway Data_____ Type of analysis Diverge Number of lanes in freeway Free-flow speed on freeway 65.0 mph Volume on freeway 950 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp 1 Free-Flow speed on ramp 60.0 mph 500 Volume on ramp vph Length of first accel/decel lane 500 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? No Volume on adjacent ramp vph Position of adjacent ramp Type of adjacent ramp Distance to adjacent ramp ft ______Conversion to pc/h Under Base Conditions_____

Junction Components	Freeway		Ramp		Adjacent	
					Ramp	
Volume, V (vph)	950		500			vph
Peak-hour factor, PHF	0.90		0.90			
Peak 15-min volume, v15	264		139			v
Trucks and buses	5		5			%
Recreational vehicles	0		0			%
Terrain type:	Level		Level			
Grade	0.00	%	0.00	%	%	
Length	0.00	mi	0.00	mi	m	i
Trucks and buses PCE, ET	1.5		1.5			
Recreational vehicle PCE, ER	1.2		1.2			

pcph

```
Heavy vehicle adjustment, fHV
Driver population factor, fP
Flow rate, vp
                   _____Estimation of V12 Diverge Areas__
                 L =
                  ΕQ
```

```
0.976
             0.976
1.00
            1.00
1082
             569
```

```
(Equation 13-12 or 13-13)
     0.707 Using Equation 5
FD
v = v + (v - v) P = 932 pc/h
12 R
        F R FD
```

_____Capacity Checks_____

	Actual	Maximum	LOS F?
v = v	1082	7050	No
Fi F			
v = v - v	513	7050	No
FO F R			
v	569	2200	No
R			
v or v	150 pc/h	(Equation 13-14	1 or 13-17)
3 av34			
Is $v \text{ or } v > 27$	00 pc/h?	No	
3 av34			
Is $v \text{ or } v > 1.$	5 v /2	No	
3 av34	12		
If yes, $v = 932$	(Equation 13-15,	13-16, 13-18, or 13-19)
12A			

_Flow Entering Diverge Influence Area____ Actual Max Desirable Violation? 4400 932 No V 12

___Level of Service Determination (if not F)______

D = 4.252 + 0.0086 v - 0.009 L = 7.8 pc/mi/lnDensity, 12 R Level of service for ramp-freeway junction areas of influence A

_____Speed Estimation____

D = 0.154Intermediate speed variable, S Space mean speed in ramp influence area, S = 61.5mph R Space mean speed in outer lanes, S = 71.3mph Space mean speed for all vehicles, S = 62.7mph

Appendix J: Turn Lane Length Calculations

Project ID: Opportunity Corridor PID 77333 **Date:** 04/17/12

E-W Road: Quadrant N-S Road: E55th

Analyst: TVF Metric (y,n): n

Input Values:

A.M. Peak Hour Volume (vehicles)

Eastbound		Westbound		Northbound		Southbound	
Left	0	Left	260	Left	0	Left	120
Through	0	Through	0	Through	1030	Through	250
Right	0	Right	200	Right	320	Right	0

P.M. Peak Hour Volume (vehicles)

Eastbound		Westbound		Northbound		Southbound	
Left	0	Left	120	Left	0	Left	240
Through	0	Through	0	Through	240	Through	1290
Right	0	Right	120	Right	170	Right	0

Intersection Geometry - Number of Lanes (Use 0 if Turn Lane is Shared, i.e., Not Exclusive)

Eastbound		Westbound		Northbound		Southbound		
Left	0	Left	1	Left	0	Left	1	
Through	0	Through	0	Through	2	Through	2	
Right	0	Right	1	Right	0	Right	0	
Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	
Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	

Design Speed (mph)

Eastbound	Westbound	Northbound	Southbound		
30	30	35		35	

Cycle Length

AM (sec) 120 PM (sec) 120

Analysis Results:

	<u>Westbound</u>	
0	Left	400
0	Through	0
0	Right	325
	Southbound	
0	<u>Southbound</u> Left	375 Lane Blocked
0 775		375 Lane Blocked
	0	0 Through

Project ID: Opportunity Corridor PID 77333 **Date:** 04/17/12

E-W Road: Boulevard N-S Road: Quadrant

Analyst: TVF Metric (y,n): n

Input Values:

A.M. Peak Hour Volume (vehicles)

Eastbound		Westbound		Northbound		Southbound	
Left	0	Left	200	Left	220	Left	0
Through	1800	Through	1300	Through	0	Through	0
Right	260	Right	0	Right	220	Right	0

P.M. Peak Hour Volume (vehicles)

Eastbound		Westbound		Northbound		Southbound	
Left	0	Left	80	Left	230	Left	0
Through	1250	Through	1220	Through	0	Through	0
Right	160	Right	0	Right	180	Right	0

Intersection Geometry - Number of Lanes (Use 0 if Turn Lane is Shared, i.e., Not Exclusive)

Eastbound		Westbound		Northbound		Southbound		
Left	0	Left	1	Left	2	Left	0	
Through	3	Through	2	Through	0	Through	0	
Right	0	Right	0	Right	1	Right	0	
Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	
Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	

Design Speed (mph)

Eastbound	Westbound	Northbound	Southbound
40	40	30	30

Cycle Length

AM (sec)	120
PM (sec)	120

Analysis Results:

Eastbound		<u>Westbound</u>	
Left	0	Left	386 Lane Blocked
Through Right	775 0	Through Right	750 0
Northbound		Southbound	
<u>Northbound</u> Left	225	<u>Southbound</u> Left	0
	225 175		0
Left			0

Project ID: Opportunity Corridor PID 77333 Date: 04/18/12

E-W Road: Boulevard N-S Road: Kinsman

Analyst: TVF Metric (y,n): n

Input Values:

A.M. Peak Hour Volume (vehicles)

Eastbound		Westbound		Northbound		Southbound	
Left	10	Left	10	Left	250	Left	10
Through	1840	Through	1230	Through	300	Through	120
Right	170	Right	10	Right	10	Right	20

P.M. Peak Hour Volume (vehicles)

Eastbound		Westbound		Northbound		Southbound	
Left	10	Left	10	Left	130	Left	10
Through	1160	Through	1160	Through	230	Through	250
Right	250	Right	10	Right	10	Right	10

Intersection Geometry - Number of Lanes (Use 0 if Turn Lane is Shared, i.e., Not Exclusive)

Eastbound Westbound			Northbound		Southbound		
Left	1	Left	1	Left	1	Left	1
Through	3	Through	2	Through	2	Through	2
Right	0	Right	0	Right	0	Right	0
Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	Offset Left ? (y,n)	n
Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	Offset Dist. (ft.)	0

Design Speed (mph)

Eastbound	Westbound	Northbound	Southbound
40	40	35	35

Cycle Length

AM (sec) 120 PM (sec) 120

Analysis Results:

Eastbound		<u>Westbound</u>	
Left	161 Lane Blocked	Left	161 Lane Blocked
Through	775	Through	725
Right	0	Right	0
Northbound		Southbound	
Northbound Left	400	Southbound Left	100 Lane Blocked
	400 250		100 Lane Blocked

Project ID: Opportunity Corridor PID 77333 Date: 04/18/12

E-W Road: Boulevard N-S Road: E75th

Analyst: TVF Metric (y,n): n

Input Values:

A.M. Peak Hour Volume (vehicles)

Eastbound		Westbound		Northbound		Southbound	
Left	40	Left	10	Left	10	Left	10
Through	1810	Through	1230	Through	40	Through	10
Right	10	Right	10	Right	20	Right	20

P.M. Peak Hour Volume (vehicles)

Eastbound		Westbound		Northbound		Southbound	
Left	40	Left	20	Left	10	Left	10
Through	1130	Through	1150	Through	20	Through	40
Right	10	Right	10	Right	20	Right	10

Intersection Geometry - Number of Lanes (Use 0 if Turn Lane is Shared, i.e., Not Exclusive)

Eastbound		Westbound		Northbound		Southbound		
Left	1	Left	1	Left	1	Left	1	
Through	3	Through	2	Through	1	Through	1	
Right	0	Right	0	Right	0	Right	0	
Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	
Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	

Design Speed (mph)

Eastbound	Westbound	Northbound	Southbound
40	40	30	30

Cycle Length

AM (sec) 120 PM (sec) 120

Analysis Results:

<u>Eastbound</u> Left	211 Lane Blocked	<u>Westbound</u> Left	161 Lane Blocked
Through Right	725 0	Through Right	725 0
Northbound Left	100	<u>Southbound</u> Left	100

Project ID: Opportunity Corridor PID 77333 **Date:** 04/18/12

E-W Road: Boulevard N-S Road: E79th

Analyst: TVF Metric (y,n): n

Input Values:

A.M. Peak Hour Volume (vehicles)

Eastbound		Westbound		Northbound		Southbound	
Left	40	Left	90	Left	110	Left	10
Through	1670	Through	1080	Through	330	Through	110
Right	140	Right	10	Right	140	Right	70

P.M. Peak Hour Volume (vehicles)

Eastbound		Westbound		Northbound		Southbound	
Left	40	Left	210	Left	120	Left	10
Through	950	Through	1010	Through	170	Through	260
Right	180	Right	10	Right	170	Right	50

Intersection Geometry - Number of Lanes (Use 0 if Turn Lane is Shared, i.e., Not Exclusive)

Eastbound		Westbound		Northbound		Southbound		
Left	1	Left	1	Left	1	Left	1	
Through	3	Through	2	Through	1	Through	1	
Right	0	Right	0	Right	1	Right	0	
Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	
Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	

Design Speed (mph)

Eastbound	Westbound	Northbound	Southbound
40	40	30	30

Cycle Length

AM (sec) 120 PM (sec) 120

Analysis Results:

<u>Eastbound</u>		<u>Westbound</u>	
Left	211 Lane Blocked	Left	386 Lane Blocked
Through Right	725 0	Through Right	650 0
Northbound Left	225 Lane Blocked	<u>Southbound</u> Left	100 Lane Blocked
Through	400	Through	400

Project ID: Opportunity Corridor PID 77333 **Date:** 05/08/12

E-W Road: Boulevard N-S Road: Buckeye

Analyst: TVF Metric (y,n): n

Input Values:

A.M. Peak Hour Volume (vehicles)

Eastbound		Westbound		Northbound		Southbound	
Left	10	Left	40	Left	210	Left	10
Through	1720	Through	960	Through	640	Through	420
Right	80	Right	10	Right	270	Right	10

P.M. Peak Hour Volume (vehicles)

Eastbound		Westbound		Northbound		Southbound	
Left	10	Left	140	Left	70	Left	10
Through	980	Through	1140	Through	550	Through	650
Right	130	Right	10	Right	220	Right	10

Intersection Geometry - Number of Lanes (Use 0 if Turn Lane is Shared, i.e., Not Exclusive)

Eastbound		Westbound		Northbound		Southbound	
Left	1	Left	1	Left	1	Left	1
Through	3	Through	2	Through	2	Through	2
Right	0	Right	0	Right	0	Right	0
Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	Offset Left ? (y,n)	n
Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	Offset Dist. (ft.)	0

Design Speed (mph)

Eastbound	Westbound	Northbound	Southbound
40	40	35	35

Cycle Length

AM (sec) 120 PM (sec) 120

Analysis Results:

<u>Eastbound</u>		<u>Westbound</u>	
Left	161 Lane Blocked	Left	311 Lane Blocked
Through	675	Through	675
Right	0	Right	0
Northbound		Southbound	
<i>Northbound</i> Left	325 Lane Blocked	Southbound Left	100 Lane Blocked
	325 Lane Blocked 550		100 Lane Blocked 400

Project ID: Opportunity Corridor PID 77333 **Date:** 05/08/12

E-W Road: Boulevard N-S Road: Woodland

Analyst: TVF Metric (y,n): n

Input Values:

A.M. Peak Hour Volume (vehicles)

Eastbound		Westbound		Northbound		Southbound	
Left	10	Left	10	Left	230	Left	90
Through	1820	Through	770	Through	190	Through	190
Right	170	Right	20	Right	10	Right	10

P.M. Peak Hour Volume (vehicles)

Eastbound		Westbound		Northbound		Southbound	
Left	10	Left	10	Left	110	Left	50
Through	960	Through	1170	Through	180	Through	200
Right	240	Right	80	Right	10	Right	10

Intersection Geometry - Number of Lanes (Use 0 if Turn Lane is Shared, i.e., Not Exclusive)

Eastbound		Westbound		Northbound		Southbound		
Left	1	Left	1	Left	1	Left	1	
Through	3	Through	2	Through	2	Through	2	
Right	0	Right	0	Right	0	Right	0	
Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	
Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	

Design Speed (mph)

Eastbound	Westbound	Northbound	Southbound
40	40	35	35

Cycle Length

AM (sec) 120 PM (sec) 120

Analysis Results:

<u>Eastbound</u> Left	161 Lane Blocked	<u>Westbound</u> Left	161 Lane Blocked
Through	775	Through	725
Right	0	Right	0
Northbound Left	375	Southbound Left	200
Through	175	Through	175
Right	0	Right	0

Project ID: Opportunity Corridor PID 77333 **Date:** 05/08/12

E-W Road: Boulevard N-S Road: 93rd

Analyst: TVF Metric (y,n): n

Input Values:

A.M. Peak Hour Volume (vehicles)

Eastbound Westbound			Northbound		Southbound		
Left	430	Left	40	Left	10	Left	10
Through	1480	Through	580	Through	410	Through	230
Right	10	Right	10	Right	200	Right	220

P.M. Peak Hour Volume (vehicles)

Eastbound Westbound			Northbound	Southbound			
Left	230	Left	130	Left	10	Left	10
Through	780	Through	930	Through	360	Through	430
Right	10	Right	10	Right	180	Right	320

Intersection Geometry - Number of Lanes (Use 0 if Turn Lane is Shared, i.e., Not Exclusive)

Eastbound Westbound		Northbound		Southbound				
Left	1	Left	1	Left	1	Left	1	
Through	2	Through	2	Through	1	Through	1	
Right	1	Right	0	Right	1	Right	1	
Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	
Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	

Design Speed (mph)

Eastbound	Westbound	Northbound	Southbound
40	40	30	30

Cycle Length

AM (sec) 120 PM (sec) 120

Analysis Results:

<u>Eastbound</u>		<u>Westbound</u>	
Left	600 Lane Blocked	Left	311 Lane Blocked
Through Right	825 161 Lane Blocked	Through Right	550 0
Northbound Left	100 Lane Blocked	<u>Southbound</u> Left	100 Lane Blocked
Through Right	500 325 Lane Blocked	Through Right	525 450 Lane Blocked

Project ID: Opportunity Corridor PID 77333 **Date:** 05/08/12

E-W Road: Quincy N-S Road: Boulevard

Analyst: TVF Metric (y,n): n

Input Values:

A.M. Peak Hour Volume (vehicles)

Eastbound		Westbound		Northbound		Southbound	
Left	10	Left	0	Left	130	Left	0
Through	0	Through	0	Through	1550	Through	610
Right	10	Right	0	Right	0	Right	10

P.M. Peak Hour Volume (vehicles)

Eastbound Westbound			Northbound		Southbound		
Left	10	Left	0	Left	90	Left	0
Through	0	Through	0	Through	870	Through	1050
Right	10	Right	0	Right	0	Right	20

Intersection Geometry - Number of Lanes (Use 0 if Turn Lane is Shared, i.e., Not Exclusive)

		Westbound	Northbound		Southbound		
Left	1	Left	0	Left	1	Left	0
Through	0	Through	0	Through	2	Through	2
Right	1	Right	0	Right	0	Right	0
Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	Offset Left ? (y,n)	n
Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	Offset Dist. (ft.)	0

Design Speed (mph)

Eastbound	Westbound	Northbound	Southbound	
35	35	40		40

Cycle Length

AM (sec) 120 PM (sec) 120

Analysis Results:

<u>Eastbound</u>		<u>Westbound</u>	
Left	100	Left	0
Through	0	Through	0
Right	100	Right	0
Northbound		Southbound	
Left	311 Lane Blocked	Left	0
Through	850	Through	625
Right	0	Right	0

Project ID: Opportunity Corridor PID 77333 **Date:** 04/17/12

E-W Road: Cedar N-S Road: Boulevard

Analyst: TVF Metric (y,n): n

Input Values:

A.M. Peak Hour Volume (vehicles)

Eastbound Westbound			Northbound		Southbound		
Left	70	Left	140	Left	30	Left	30
Through	310	Through	180	Through	1050	Through	460
Right	10	Right	100	Right	420	Right	70

P.M. Peak Hour Volume (vehicles)

Eastbound		Westbound		Northbound		Southbound	
Left	90	Left	140	Left	20	Left	60
Through	250	Through	170	Through	500	Through	840
Right	40	Right	70	Right	310	Right	50

Intersection Geometry - Number of Lanes (Use 0 if Turn Lane is Shared, i.e., Not Exclusive)

Eastbound		Westbound		Northbound		Southbound		
Left	1	Left	1	Left	1	Left	1	
Through	2	Through	1	Through	3	Through	2	
Right	0	Right	0	Right	0	Right	0	
Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	
Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	

Design Speed (mph)

Eastbound	Westbound	Northbound	Southbound
35	35	40	40

Cycle Length

AM (sec) 120 PM (sec) 120

Analysis Results:

Eastbound		Westbound	
Left	200 Lane Blocked	Left	250 Lane Blocked
Through Right	250 0	Through Right	375 0
<u>Northbound</u> Left	161 Lane Blocked	<u>Southbound</u> Left	211 Lane Blocked

Project ID: Opportunity Corridor PID 77333 **Date:** 04/17/12

E-W Road: Carnegie N-S Road: Boulevard

Analyst: TVF Metric (y,n): n

Input Values:

A.M. Peak Hour Volume (vehicles)

Eastbound		Westbound		Northbound		Southbound	
Left	10	Left	180	Left	50	Left	40
Through	530	Through	1530	Through	1050	Through	380
Right	30	Right	110	Right	20	Right	10

P.M. Peak Hour Volume (vehicles)

Eastbound		Westbound		Northbound		Southbound	
Left	70	Left	150	Left	50	Left	80
Through	1390	Through	770	Through	580	Through	750
Right	10	Right	60	Right	50	Right	40

Intersection Geometry - Number of Lanes (Use 0 if Turn Lane is Shared, i.e., Not Exclusive)

Eastbound		Westbound		Northbound		Southbound		
Left	1	Left	1	Left	1	Left	1	
Through	2	Through	2	Through	3	Through	2	
Right	0	Right	1	Right	0	Right	0	
Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	
Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	

Design Speed (mph)

Eastbound	Westbound	Northbound	Southbound
35	35	40	40

Cycle Length

AM (sec) 120 PM (sec) 120

Analysis Results:

Eastbound		Westbound	
Left	200 Lane Blocked	Left	300 Lane Blocked
Through	800	Through	850
Right	0	Right	225 Lane Blocked
Northbound		Southbound	
<u>Northbound</u> Left	211 Lane Blocked	<u>Southbound</u> Left	261 Lane Blocked
	211 Lane Blocked 450		261 Lane Blocked 500

Project ID: Opportunity Corridor PID 77333 **Date:** 04/17/12

E-W Road: Euclid N-S Road: Boulevard

Analyst: TVF Metric (y,n): n

Input Values:

A.M. Peak Hour Volume (vehicles)

Eastbound		Westbound		Northbound		Southbound	
Left	160	Left	40	Left	90	Left	10
Through	300	Through	410	Through	520	Through	310
Right	60	Right	20	Right	480	Right	260

P.M. Peak Hour Volume (vehicles)

Eastbound		Westbound		Northbound		Southbound	
Left	290	Left	290	Left	90	Left	40
Through	320	Through	370	Through	530	Through	440
Right	90	Right	20	Right	110	Right	230

Intersection Geometry - Number of Lanes (Use 0 if Turn Lane is Shared, i.e., Not Exclusive)

Eastbound		Westbound		Northbound		Southbound		
Left	1	Left	1	Left	1	Left	1	
Through	1	Through	1	Through	2	Through	2	
Right	0	Right	0	Right	1	Right	0	
Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	
Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	

Design Speed (mph)

Eastbound	Westbound	Northbound	Southbound
30	30	40	40

Cycle Length

AM (sec) 120 PM (sec) 120

Analysis Results:

<u>Eastbound</u>		<u>Westbound</u>	
Left	425 Lane Blocked	Left	425 Lane Blocked
Through	500	Through	525
Right	0	Right	0
<u>Northbound</u>		Southbound	
<u>Northbound</u> Left	261 Lane Blocked	<u>Southbound</u> Left	211 Lane Blocked
	261 Lane Blocked 350		211 Lane Blocked 450

Project ID: Opportunity Corridor PID 77333 **Date:** 04/17/12

E-W Road: Chester N-S Road: Boulevard

Analyst: TVF Metric (y,n): n

Input Values:

A.M. Peak Hour Volume (vehicles)

Eastbound		Westbound		Northbound		Southbound	
Left	170	Left	10	Left	90	Left	40
Through	510	Through	1120	Through	530	Through	460
Right	90	Right	90	Right	30	Right	10

P.M. Peak Hour Volume (vehicles)

Eastbound		Westbound		Northbound		Southbound	
Left	90	Left	10	Left	50	Left	40
Through	1400	Through	500	Through	730	Through	560
Right	110	Right	30	Right	90	Right	100

Intersection Geometry - Number of Lanes (Use 0 if Turn Lane is Shared, i.e., Not Exclusive)

Eastbound		Westbound		Northbound		Southbound		
Left	1	Left	1	Left	1	Left	1	
Through	3	Through	2	Through	2	Through	2	
Right	0	Right	0	Right	0	Right	0	
Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	Offset Left ? (y,n)	n	
Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	Offset Dist. (ft.)	0	

Design Speed (mph)

Eastbound	Westbound	Northbound	Southbound
35	35	40	40

Cycle Length

AM (sec) 120 PM (sec) 120

Analysis Results:

<u>Eastbound</u> Left	300 Lane Blocked	<u>Westbound</u> Left	100 Lane Blocked
Through Right	600	Through Right	725 0
Northbound Left	261 Lane Blocked	<u>Southbound</u> Left	211 Lane Blocked